THERMAL POWER LIBRARY

Overview

AGENDA

- □ About Thermal Power Library
- □ Key Benefits
- □ Key Capabilities
- Key Applications
- Library Contents
- Modelon Compatibility
- Latest Release

ABOUT THERMAL POWER LIBRARY

- Comprehensive modeling, simulation, and optimization framework for thermal power systems, including district heating networks.
- Covering new and traditional energy sources including:
 - Concentrated solar
 - Gas and coal
 - Waste
 - Nuclear

PURPOSE

- Simulation of thermal power plants and district heating systems for
 - Process design
 - New plant concept evaluation
 - Requirement verification
 - Analysis of plant dynamics
 - Controller design and tuning
 - Commissioning
 - Lifetime calculation
- Optimal operation of plants and district heating systems
 - Start-up optimization of power plants
 - Short-term production planning for district heating systems

KEY BENEFITS

- Rapid model development using pre-configurable templates and numerically efficient models & fluids
- Ready to apply out of the box, accurate and robust models with a large set of correlations
- Easy to share and re-use models during the entire design cycle thanks to flexible fidelity
- Ability to simulate start-up sequences, standard and emergency scenarios or design plant-wide control strategies

KEY CAPABILITIES

- Wide support of technologies including solar, gas, waste, coal and nuclear
- Large set of components and fluid models
- Detailed geometry vs data based correlations
- Complex geometry-based and simpler efficiency-based heat exchanger models
- Fast steam/water and flue-gas properties
 - IF97 water/steam implementation with analytical derivatives
- Fluid and models capable of gradient-based optimization
- Integration with Modelon carbon capture plant library
- Heat exchanger dimensioning using dynamic models
- Easy control design with autotuner and inverse models

KEY APPLICATIONS

Improving Power Plant Operation

Objective

Using Modelon's Thermal Power Library researchers set out to improve the flexibility of one of Germany's largest thermal power plants – integrating a higher number of renewable energy sources.

Results

- Validated model using experimental data
- Control reserve assessment
- Estimation of the mechanical and thermal stress
- Improved primary control reserve
- Experimental verification of the improved controller
- Minimal life time consumption of critical components

Optimized Start-up of a Gas Combined Cycle and a Coal Fired Power Plant

Objective

Improve plant flexibility by reducing start-up time. Power output is maximized while keeping stress level under threshold limits using optimization techniques.

Results

- Better economy with maximized power output.
- Improved life-time with temperature gradients constraints

emissions In collaboration with:

SIEMENS

35%

Less CO2

Platform for Microgrid Design and Operation

Objective

Build, size, configure and control microgrid based on its geographic location balancing the power flow depending on the amount of energy produced by the renewable resources.

Results

Two different use cases:

- Peak shaving optimization to reduce cost with limited power consumption during high loads
- Economy dispatch finding the optimal operation of the microgrid components with the resulting economic cost

	Producers [kWh]		Consumers [kWh]		Economy
PV	1102	Load	2400	Cost	\$329
DieselGen	960	Grid	-1115	Diesel	120 L
Battery	-720				

Upgrade to 4th Generation District Heating Systems

Objective

Assess the impact of an upgrade of an existing heating network when renewables with volatile production and prosumers are introduced throughout the network.

Results

- Operation at lower pressure with distributed production units
- Prediction of local pressure transients and back-flows
- Design and verification of advanced control strategy

Optimal Production Planning of District Heating Systems

4400

Objective

Optimize the operation of district heating networks to minimize cost while satisfying constraints from network capacity and customer demand

Results

- Maximal flowrate and minimal supply temperature for low cost operation
- Peak shaving by exploiting heat storage in network
- Transport delay and heat loss accurately accounted for

lelon

Time (hours)

Total customer load

Total load

T_supply Customer O Temperature constrai

Customer O differential pressure and differential pressure constraint

Time (hours)

Operation of a CO2 Absorption Process Integrated in a Coal-Fired Power Plant

Objective

Investigate new operating requirements and implementation of new technologies.

Results

- CO₂-absorption process does not significantly affect the load-following capabilities of the power plant in terms of power output
- When steam availability is varying, power output can be increased at the expense of increased CO₂ emissions.

Thermal Power Plant Design and Extension

Typical customer concerns addressed by the library

- 1. Is my drum well-dimensioned? Can it be properly controlled?
- 2. A new heat/steam customer is to be connected to my plant. What is the impact on the plant control and efficiency?
- 3. Nominal plant data are available from a tender call. How does the future plant behave at part loads and during transients?
- 4. What would be the economic gain of a design change based on data for a typical year?
- 5. What is the minimum size of the bleed valve to be able to control the pressure in the feedwater tank?

- Examples
 - Conventional and renewable energy applications: nuclear, gas, microgrid, district heating, coal, district heating and design

- Microgrid
 - Dynamic simulation including both consumers and producers sources
 - Control system balances the power flow depending on the amount of energy produced by the renewable resources

• Solar

- Support for parabolic trough, power tower
- Energy storage using molten salt

delon

- District heating
 - Non-linear physics based models with transport delays
 - Scalable simulation to several hundred customers
 - Fast simulation of transient scenarios
 - Production planning using dynamic optimization

- TwoPhase
 - Liquid, vapor and 2-phase components
 - Steam and water but also refrigerant capable

- FlueGas (gas mixtures)
 - Pipes, valves, volumes, combustor, fan ...
 - Efficient lumped pressure discretization in pipes

- SolidFuels
 - Combustors, sources, transport, heating values calculator
 - Quickly create fuel mixtures

- Control
 - Templates for automatic control design and verification
 - PID controller, autotuner, inverse models for feedforward action

- Heat exchanger dimensioning
 - Using dynamic models (can be integrated directly into a system)
 - Support of various design modes (temperature, heatflow..)

400.0 T out sec [C]	703.1 T out prim [C]	1687.2 Q [kW]	31.60 Tube length [m] 3.23 Delay time [s]	25 Number of tubes 99.3 Heat area (inner)[m ²]	47 alpha prim [W/(m^2*K)] 1162 alpha sec [W/(m^2*K)]
	0.20 Effectiveness			99.3 Heat area (outer)[m*2]	

Y SuperheaterVerification

- System component
 - System wide settings (ambient pressure and temperature)
 - Automatic system summation:
 - Fluid mass, volume and energy
 - Wall mass and energy
 - Power consumption of auxiliary components

• Media

elon

- Gas mixtures, liquids, fuel and two-phase
- Efficient and optimization capable
- Fast and robust IF97 water/steam implementation with analytic derivatives

LATEST RELEASE

RELEASE: 2021.2 New Features

- Thermal Power Library enhanced by a CO₂ storage separation process for gas-liquid contactors containing models for carbon separation from fuel gas with an absorption process and adsorption process
- New detailed photovoltaic models with connection to the electrical grid

Solar Power Tower with Supercritical CO₂ -based
Recompression Brayton Cycle example has been
developed. This is an example of a central receiver
concentrated solar power system, based on a model of
the 12.5 MW Solar Two test facility

RELEASE: 2021.2

Enhancements

- Significantly improved microgrid in the Thermal Power Library
 with various control and dynamic optimization options
 - Economic Dispatch
 - Peak Shaving
 - Demand Charge Reduction
 - PV Sizing
 - Generator Sizing

RELEASE: 2021.2

Enhancements

- Geometry parameters S_t and S_l of Fins are no longer evaluated
- Improved the start attributes of the HeatExchangerDimensioningBase template
- Replaced all type of absolute pressures from SI.Pressure to SI.AbsolutePressure, since SI.AbsolutePressure is a better usage

