HYDRAULICS LIBRARY

Overview

AGENDA

- □ About Hydraulics Library
- Key Benefits
- □ Key Capabilities
- Key Applications
- Library Contents
- Modelon Compatibility
- Latest Release

ABOUT HYDRAULICS LIBRARY

- Modelica library for hydraulic systems
 - High pressure (up to several hundred bar)
 - Compressible flow
 - Optional ThermoHydraulics
- Components
 - Most models needed for fluid power applications available, both mobile and stationary
 - More can be built from basic building blocks
- Open Code means User is in Control
 - View, extend, modify models
 - Ideal for model sharing (encryption)
- Simulation of hydraulic systems for
 - Overall system dynamics
 - Verification of dimensioning
 - Testing of control strategies

KEY BENEFITS

- Easy-to-Use yet Powerful
 - Wide range of predefined components
 - New users get started quickly
 - No limitations for experienced users
- Unrivalled Flexibility
 - All components can be copied and modified
- Well suited for control design and validation
- True multi-engineering tool
 - Modeling of multi-domain systems, combine with multibody mechanics, control system etc.
 - Easy to integrate with other available libraries
- Visualization
 - Easily visualize system behaviour
 - Graphical workspace looks like a hydraulic scheme

KEY CAPABILITIES

KEY CAPABILITIES

- Integration of hydraulic systems in wide range of multi-physics models
- Deployment
 - Co-simulation
- List of applications
 - Industrial Equipment:
 - Agricultural, drills, hammers, excavators etc.
 - Vehicles:
 - Brakes, dampers, gearboxes, power steering etc.
 - Aircrafts:
 - Actuators, landing gear etc.

KEY APPLICATIONS

EXAMPLE: CRDI SYSTEM MODEL

- Common rail diesel injection pump model built from scratch using Elements models
- The long line models from the library are put to good use to capture high frequency phenomenon

EXAMPLE: SHIFT SHOCK STUDY MODEL

- Automatic transmission shift mechanism built using off-theshelf library components as well as Elements models
- Shift shock phenomenon studied using the models

- Standard package order
 - Information
 - Examples
 - Interfaces
 - Templates
 - Components by type
- 2 Levels of components
 - Top level components for end user
 - Basic components are subcomponents, building blocks for new user-defined components

Cylinders

• Single & Double acting, plunger

Lines

• Rigid, flexible, discretized

Sources

• Flow, pressure

Rotary Actuators

• Ideal, variable, lossy

DirectionalControl

- For flow control
- First order spool dynamics

Elements

• Primitives for detailed component design

Valves

• Pressure and flow actuated

dCV_4_2_A

P

В

0

- Accumulators
- Sensors and Utilities.Visualizers
 - Flow, pressure and temperature
 - Non-ideal sensors
- Restrictions
 - Laminar/Turbulent
 - Cavitational effects
 - Geometry based fittings
- Volumes
 - Closed, open, chamber

- Fluids
 - Pre-defined table based
 - ThermoHydraulics
 - Equation based
 - Constant properties
 - With unresolved air
 - Nykaenen,
 - Gibson,
 - Hoffman
 - Coefficient based jet fuels

MORE LIBRARY VIEWS

✓ ♀ Accumulators Information > T Templates SpringAccumulator PistonGasAccumulator Q AccumulatorSimple Ģ AccumulatorDetailed i Information > 0 Interfaces > T Templates PlungerCylinder SingleActingCylinder E DifferentialCylinder DoubleActingDualRod ✓ [⊥]^T DirectionalControl Information PreDefined > 🔌 Examples > 🖸 Interfaces T Templates - [~] Actuators > C Basic AB R DCV_3_2_PAB Å Ru DCV_3_2_PAT AB BT DCV_4_2_A AB DCV_4_2_X AB PII DCV 4 3 A A'B PT DCV_4_3_B AB PI DCV_4_3_C DCV_4_3_X

MODELON COMPATIBILITY

RECOMMENDED MODELON LIBRARY COMPATIBILITY

- Hydraulics Library can be combined with other Modelon libraries to solve specific engineering design tasks.
- Interesting libraries for integrating hydraulic solutions include the
 - Vehicle Dynamics Library
 - Pneumatics Library
- These libraries can also be used as a stand-alone solution.

EXAMPLE: ABS SYSTEM MODELS

- Anti-lock braking system involving the master cylinder and caliper models
- Off-the-shelf component models from library used to build the master cylinder circuit and caliper models

LATEST RELEASE

RELEASE: 2021.2

New Features

- Added a utility and associated examples to plot fluid properties
- The Elements package now uses a modular structure to select the fidelity of the modeled physical effects as well as to define the geometric parametrization

Enhancements

- Complete review of all experiment-annotations
- Harmonized code layer of ZeroVolume and Volume
- Moved reverse parameter in Elements to the General tab so it becomes more accessible

