
FMI Toolbox User's Guide 2.6.4

FMI Toolbox User's Guide 2.6.4

Publication date 2018-07-23
Copyright © 2018 Modelon AB

Ideon Science Park

SE-22370 LUND

<info@modelon.com>

Self publishing

ALL RIGHTS RESERVED. This document contains material protected under International Copyright Laws and Treaties. Any unauthorized
reprint or use of this material is prohibited. No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, or by any information storage and retrieval system without express written permission from the author /
publisher.

iii

Table of Contents
1. Introduction .. 1

1.1. The FMI Toolbox for MATLAB/Simulink ... 1
1.2. The Functional Mock-up Interface .. 1

2. Installation .. 3
2.1. Supported platforms ... 3
2.2. Prerequisites ... 3

2.2.1. MATLAB/Simulink ... 3
2.2.1.1. FMU import .. 3
2.2.1.2. Simulink Coder/Real-Time Workshop .. 4

2.3. Installation procedure ... 6
2.3.1. For Windows ... 6
2.3.2. For Linux .. 7
2.3.3. Set MATLAB path .. 7
2.3.4. Unattended installation ... 7

2.3.4.1. Windows ... 7
2.3.4.2. Linux ... 8

2.4. License information ... 9
2.4.1. Demo mode ... 9

2.5. Uninstallation procedure ... 9
2.5.1. For Windows ... 9
2.5.2. For Linux .. 9
2.5.3. Unattended uninstallation .. 10

2.5.3.1. Windows ... 10
2.5.3.2. Linux .. 10

2.6. Support .. 11
3. Simulation with Simulink .. 12

3.1. Introduction .. 12
3.2. Getting started ... 12
3.3. FMU block properties ... 18

3.3.1. Set parameters and variables start values .. 18
3.3.2. Input ports ... 21
3.3.3. Output ports ... 21

3.3.3.1. Direct Feedthrough .. 24
3.3.4. FMU model information ... 26
3.3.5. Log ... 28

3.3.5.1. Create result file ... 29
3.3.5.2. Logger .. 30

3.3.6. Advanced ... 30
3.3.6.1. Block icon and mask ... 31
3.3.6.2. Tolerances (Not for FMU CS 1.0) .. 32

FMI Toolbox User's Guide 2.6.4

iv

3.3.6.3. Sample times (FMU CS block only) ... 32
3.3.6.4. Reload FMU .. 32
3.3.6.5. Find FMU file on Model load ... 32

3.3.7. Coder .. 33
3.3.8. Scripting FMU block ... 34
3.3.9. Load FMU model .. 35
3.3.10. Reset an FMU model ... 36
3.3.11. Reload FMU model .. 36
3.3.12. Add Structured Ports to the FMU Block .. 36
3.3.13. Using the filter functions ... 36

3.4. FMU block and Simulink Coder ... 37
3.5. Examples .. 38

3.5.1. Changing start values and using the filter functions .. 38
3.5.2. Configure outputs .. 40
3.5.3. Configure ports using structural naming ... 45
3.5.4. Build target containing an FMU block ... 50
3.5.5. Build rti1006.tlc target containing an FMU block .. 54

3.5.5.1. Set start values and parameters .. 57
4. Simulation in MATLAB .. 58

4.1. Introduction .. 58
4.2. A first example ... 58
4.3. Using the FMU model classes .. 60

4.3.1. Handle class ... 60
4.3.2. Calling functions ... 60
4.3.3. Help .. 61

4.4. Examples .. 62
4.4.1. Set start values and parameters .. 62
4.4.2. Simulation with inputs .. 64
4.4.3. Simulation with configured output .. 66

4.4.3.1. Using custom solver (Model Exchange only) .. 68
4.5. Upgrading to FMI 2.0 ... 68

4.5.1. Converting from FMI 1.0 to FMI 2.0 .. 68
4.5.2. Using both FMI 1.0 and FMI 2.0 in scripts .. 70

5. FMU export from Simulink .. 71
5.1. Introduction .. 71
5.2. Getting started ... 71
5.3. Simulink Coder targets for FMU export ... 77
5.4. Selecting MEX C compiler .. 79
5.5. Co-Simulation export .. 79

5.5.1. Synchronization of time .. 79
5.5.2. Capability flags ... 80
5.5.3. Configuration Parameters .. 81

FMI Toolbox User's Guide 2.6.4

v

5.5.3.1. Solver ... 81
5.5.3.2. Optimization .. 81
5.5.3.3. Real-Time Workshop/Code Generation ... 81

5.5.4. Support for user defined S-Function blocks .. 84
5.6. Model Exchange export .. 86

5.6.1. Configuration Parameters .. 86
5.6.1.1. Solver ... 86
5.6.1.2. Optimization .. 87
5.6.1.3. Real-Time Workshop/Code Generation ... 87

5.6.2. Support for user defined S-Function blocks .. 90
5.7. Parameters .. 91
5.8. Internal signals .. 91

5.8.1. Test points ... 93
5.9. Supported data types .. 94
5.10. Supported blocks .. 95
5.11. Examples .. 106

5.11.1. Using a Simulink model to control a Vehicle model ... 106
5.11.1.1. Export Simulink model as FMU ... 106
5.11.1.2. Import FMU in vehicle model and simulate it in Dymola 108

6. Design of Experiments .. 112
6.1. Introduction ... 112

6.1.1. Concepts .. 112
6.1.2. Workflow ... 113

6.2. Getting started ... 113
6.3. Function reference .. 116

6.3.1. FMUModelME1 .. 117
6.3.1.1. trim ... 117
6.3.1.2. linearize ... 118

6.3.2. FMUDoESetup .. 119
6.3.2.1. Constructor .. 119
6.3.2.2. DoE methods .. 122

6.3.3. FMUDoEResult ... 125
6.3.3.1. properties ... 125
6.3.3.2. main_effects ... 126
6.3.3.3. bode .. 128
6.3.3.4. step ... 129

6.4. Examples .. 129
6.4.1. Mass-Spring system ... 129

6.4.1.1. Define the Experiment Setup ... 129
6.4.1.2. Run DoE experiments .. 130
6.4.1.3. Analyze results ... 131

7. Tutorial examples ... 138

FMI Toolbox User's Guide 2.6.4

vi

7.1. Stabilization of a Furuta pendulum system .. 138
7.1.1. Tutorial .. 139

7.1.1.1. Simulate Furuta model with co-simulation block ... 146
7.2. Vehicle dynamics model simulated in Simulink with a driver ... 148

7.2.1. Tutorial .. 149
8. Limitations .. 156

8.1. Simulink FMU block .. 156
8.2. MATLAB FMU Classes .. 156
8.3. FMU Export .. 156

8.3.1. Common target .. 156
8.3.2. Model Export target ... 158
8.3.3. Co-Simulation target .. 158

9. License installation ... 159
9.1. Retrieving a license file ... 159

9.1.1. Get MAC address .. 159
9.2. Install a license .. 161

9.2.1. Installing a node-locked license .. 161
9.2.1.1. Windows ... 161
9.2.1.2. Unix ... 161
9.2.1.3. Updating the license .. 162

9.2.2. Installing a server license .. 162
9.2.2.1. Windows ... 162
9.2.2.2. Unix ... 163
9.2.2.3. Using the environment variable .. 164
9.2.2.4. Updating the license .. 164

9.3. Installing a license server .. 164
9.3.1. Configure the license file .. 164
9.3.2. Installation on Windows .. 165
9.3.3. Installation on Unix .. 166

9.4. Troubleshooting license installation ... 167
9.4.1. Running lmdiag ... 167

10. Release notes ... 169
10.1. Release 2.6.4 ... 169
10.2. Release 2.6.3 ... 169
10.3. Release 2.6.2 ... 169
10.4. Release 2.6.1 ... 170
10.5. Release 2.6 .. 170
10.6. Release 2.5 .. 170
10.7. Release 2.4 .. 170
10.8. Release 2.3.3 ... 171
10.9. Release 2.3.2 ... 171
10.10. Release 2.3.1 .. 171

FMI Toolbox User's Guide 2.6.4

vii

10.11. Release 2.3 .. 172
10.12. Release 2.2.1 .. 172
10.13. Release 2.2 .. 172
10.14. Release 2.1 .. 172
10.15. Release 2.0.1 .. 172
10.16. Release 2.0 .. 173
10.17. Release 1.9 .. 173
10.18. Release 1.8.6 .. 173
10.19. Release 1.8.5 .. 174
10.20. Release 1.8.4 .. 174
10.21. Release 1.8.3 .. 174
10.22. Release 1.8.2 .. 174
10.23. Release 1.8.1 .. 175
10.24. Release 1.8 .. 175
10.25. Release 1.7.2 .. 176
10.26. Release 1.7.1 .. 176
10.27. Release 1.7 .. 176
10.28. Release 1.6.1 .. 176
10.29. Release 1.6 .. 177
10.30. Release 1.5 .. 177
10.31. Release 1.4.6 .. 177
10.32. Release 1.4.5 .. 177
10.33. Release 1.4.4 .. 177
10.34. Release 1.4.3 .. 177
10.35. Release 1.4.2 .. 177
10.36. Release 1.4.1 .. 178
10.37. Release 1.4 .. 178
10.38. Release 1.3.1 .. 178
10.39. Release 1.3 .. 178
10.40. Release 1.2 .. 178
10.41. Release 1.1 .. 179
10.42. Release 1.0 .. 179

Bibliography .. 180

1

Chapter 1. Introduction
1.1. The FMI Toolbox for MATLAB/Simulink
The FMI Toolbox for MATLAB integrates Modelica-based physical modeling into the MATLAB/Simulink envi-
ronment. FMI Toolbox offers the following main features:

• Simulation of compiled dynamic models, FMUs, in Simulink. FMUs may be generated by an FMI-compliant
tool such as SimulationX or Dymola. The Simulink FMU block offers configuration of parameter and start
values as well as block outputs. The Simulink import supports FMI version 1.0 and 2.0 for both Model Exchange
and Co-Simulation FMUs.

• Export of Simulink models to FMUs. FMUs may be simulated in FMI compliant simulation tools such as Sim-
ulationX or Dymola. Export is supported for FMI version 1.0 and 2.0 for Model Exchange and Co-Simulation.
Requires Simulink Coder and FMI Toolbox Coder add-on.

• Simulation of compiled dynamic models, FMUs, using MATLAB's built in integrators (e.g., ode45 and ode15s).
This feature makes FMI Toolbox useful also for users without access to Simulink.

• Static and dynamic analysis of FMUs through design-of-experiments (DoE) functions for optimization, cali-
bration, control design, and robustness analysis. The dynamic analysis features require the MATLAB Control
System Toolbox.

• The FMI Toolbox supports FMI version 1.0 and 2.0 import in MATLAB for both Model Exchange and for Co-
Simulation. DoE analysis is supported for Model Exchange 1.0.

• FMU blocks are supported by Simulink Coder/Real-Time Workshop. It is possible to build a Simulink model
containing an FMU block and run it on e.g dSPACE´s DS1006 platform for HIL (hardware-in-the-loop) simu-
lations.

1.2. The Functional Mock-up Interface
The Functional Mock-up Interface is a standard for exchange of compiled dynamic models, and is intended to
promote model reuse and tool interoperability. Several tools provide export of Functional Mock-up Units (FMUs),
all of which can be used with the FMI Toolbox for MATLAB. FMI provides two different formats for exchange
of models:

• FMI for Model Exchange (FMI-ME). The FMI-ME specification is based on a continuous-time hybrid Ordinary
Differential Equation (ODE) representation. The FMU-ME provides inputs and outputs and exposes functions
for setting parameters and computing the derivatives of the ODE. Environments importing FMU-MEs need to
provide an integrator, or ODE solver, that integrates the dynamics of the model.

Introduction

2

• FMI for Co-Simulation (FMI-CS). The FMI-CS specification provides a model representation where both the
model and an integrator (ODE solver) is encapsulated inside the FMU-CS. Similar to the FMI-ME, the FMU-
CS provides inputs and outputs and means to set model parameters. It also provides a function to integrate the
dynamics of the model for a specified time interval. Environments importing FMU-CS' therefore do not have
to provide an integrator.

The FMI Toolbox for MATLAB supports import for both the Model Exchange and Co-Simulation specifications.
Simulink models can be exported as Model Exchange or Co-Simulation FMUs.

3

Chapter 2. Installation
2.1. Supported platforms
The FMI Toolbox for MATLAB is supported on Windows 7, Windows 10, and Ubuntu 14.04 (Trusty Tahr).
There are 2 different installers, one for Windows (32- and 64-bit) MATLAB and one for Linux (64-bit) MATLAB.
The installer's name indicates which one of these it is. FMIToolbox is supported for MATLAB 2010b or later on
Windows and for MATLAB 2015a to MATLAB 2017b on Ubuntu 14.04 (64-bit).

Make sure you install the right one by typing computer in the MATLAB Command Window to get the computer
type on which MATLAB is executing. Then look in table below to find the right installer to use.

>> computer

ans =

PCWIN

In this example, the installer FMI Toolbox-X.X-win.exe should be used. X.X are the placeholder the version
numbers of FMI Toolbox installer.

Table 2.1 Different installers for MATLAB

Computer type on which MATLAB is executing Installer to use

PCWIN FMI Toolbox-X.X-win.exe

PCWIN64 FMI Toolbox-X.X-win.exe

GLNX86 FMI-Toolbox_X.X_linux.tar.gz

GLNXA64 FMI-Toolbox_X.X_linux.tar.gz

2.2. Prerequisites
Please make sure that all prerequisites are fulfilled before installing the product.

2.2.1. MATLAB/Simulink

Verify that your software version is amongst those supported in the tables below.

2.2.1.1. FMU import

On Windows, all MATLAB versions from 2010b to 2018a are supported. On Linux (Ubuntu) MATLAB versions
between 2015a and 2017b are supported. This table lists the MATLAB/Simulink versions that are tested for import
and simulation of FMUs.

Installation

4

Table 2.2 Supported MATLAB/Simulink

MATLAB version (Simulink version) Supported on Windows Supported on Linux

MATLAB 9.4 - R2018a (Simulink 9.1) Yes Noa

MATLAB 9.3 - R2017b (Simulink 9.0) Yes Yes

MATLAB 9.2 - R2017a (Simulink 8.9) Yes Yes

MATLAB 9.1 - R2016b (Simulink 8.8) Yes Yes

MATLAB 9.0 - R2016a (Simulink 8.7) Yes Yes

MATLAB 8.6 - R2015b (Simulink 8.6) Yes Yes

MATLAB 8.5 - R2015a (Simulink 8.5) Yes Yes

MATLAB 8.4 - R2014b (Simulink 8.4) Yes No

MATLAB 8.3 - R2014a (Simulink 8.3) Yes No

MATLAB 8.2 - R2013b (Simulink 8.2) Yes No

MATLAB 8.1 - R2013a (Simulink 8.1) Yes No

MATLAB 8 - R2012b (Simulink 8) Yes No

MATLAB 7.14 - R2012a (Simulink 7.9) Yes No

MATLAB 7.13 - R2011b (Simulink 7.8) Yes No

MATLAB 7.12 - R2011a (Simulink 7.7) Yes No

MATLAB 7.11.2 - R2010b SP 2 (Simulink 7.6.2) Yes No

MATLAB 7.11.1 - R2010b SP 1 (Simulink 7.6.1) Yes No

MATLAB 7.11.0 - R2010b (Simulink 7.6) Yes No
aDue to a glibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018a is currently not supported on Linux (Ubuntu 14.04)

The features for dynamic DoE analysis (linearization, bode, and step response plots) require the MATLAB Control
System Toolbox.

2.2.1.2. Simulink Coder/Real-Time Workshop

Note: This is ONLY required for exporting FMUs from Simulink or when Simulink Coder/Real-Time Workshop
is used to build models that contains an FMU block. Verify that your Simulink Coder/Real-Time Workshop and
target compiler is amongst those supported, see Table 2.3 and Table 2.4 respectively.

In order to build Simulink models with the target rti1006.tlc that contains the FMU blocks, the FMU must contain
it's source code. For a list of FMUs that has been tested, see Table 2.6. For a list of targets that are supported, see
Table 2.5. For more even more details see, Section 3.4.

Note:It is not yet possible to build Simulink models that contains the FMU blocks on Linux.

Installation

5

Table 2.3 Supported Simulink Coder/Real-TimeWorkshop

Simulink Coder (MATLAB version) Supported on Windows Supported on Linux

Simulink Coder 8.14 (R2018a) Yes Noa

Simulink Coder 8.13 (R2017b) Yes Yes

Simulink Coder 8.12 (R2017a) Yes Yes

Simulink Coder 8.11 (R2016b) Yes Yes

Simulink Coder 8.10 (R2016a) Yes Yes

Simulink Coder 8.9 (R2015b) Yes Yes

Simulink Coder 8.8 (R2015a) Yes Yes

Simulink Coder 8.7 (R2014b) Yes No

Simulink Coder 8.6 (R2014a) Yes No

Simulink Coder 8.5 (R2013b) Yes No

Simulink Coder 8.4 (R2013a) Yes No

Simulink Coder 8.3 (R2012b) Yes No

Simulink Coder 8.2 (R2012a) Yes No

Simulink Coder 8.1 (R2011b) Yes No

Simulink Coder 8.0 (R2011a) Yes No

Real-Time Workshop 7.6.2 (R2010b Service Pack 2) Yes No

Real-Time Workshop 7.6.1 (R2010b Service Pack 1) Yes No

Real-Time Workshop 7.6 (R2010b) Yes No
aDue to a glibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018a is currently not supported on Linux (Ubuntu 14.04)

Table 2.4 Supported C compilers

Compilers on Windows Compilers on Linux

Microsoft Visual C++ 2015 (Professional) GCC 4.7

Microsoft Visual C++ 2013 (Professional) GCC 4.9

Microsoft Visual C++ 2012 (Professional)

Microsoft Visual C++ 2010 (Professional & Express)

Microsoft Visual C++ 2008 (Express)

Microsoft Visual C++ 2005 (Professional & Express)

Installation

6

Table 2.5 Targets supported and tested with the FMU blocks

Target Note Target developer vendor

grt.tlc MathWorks

grt_malloc.tlc MathWorks

rsim.tlc MathWorks

rtwsfcn.tlc MathWorks

fmu_me1.tlc Modelon

fmu_me2.tlc Modelon

fmu_cs1.tlc Modelon

fmu_cs2.tlc Modelon

rti1006.tlc Tested for dSPACE´s RCP & HIL
releases: 7.2 with service pack 1
and 2013-A with service pack 1.

dSPACE

Table 2.6 Source code FMUs tested and supported by the FMU block

FMU Generation tool

Dymola 2014 FD01

Dymola 2014

Dymola 2015 FD01 - Refresh - 20141218

Dymola 2016

Dymola 2016 FD01

Dymola 2017

Dymola 2017 FD01

2.3. Installation procedure
The following steps are needed to install and enable FMI Toolbox in MATLAB.

2.3.1. For Windows

1. Double click on the FMI Toolbox-X.X_win.exe installer to run it and follow the installation instructions.

After the installation has completed you will find a folder for the FMI Toolbox in the Windows Start menu.
From the Start menu the User's Guide in PDF format can be reached and an uninstaller for FMI Toolbox.

2. To enable the toolbox in MATLAB, a search path to the MATLAB folder in the FMI Toolbox installation
folder must be added. To add this path in MATLAB, see Section 2.3.3.

Installation

7

3. Without a license file installed, FMI Toolbox will run in Demo mode. Please read, Section 2.4, for further
information.

2.3.2. For Linux

1. The FMI Toolbox for Linux comes in a *.tar.gz file. This is a compressed archive file. To decompress and
extract the files, open a terminal window. Go to the folder where the *.tar.gz file is found, in this example
it's on the Desktop.

ba@ba-desktop:~$ cd $HOME/Desktop

2. Extract the *.tar.gz file using tar with the -xvf option followed by the name of the *.tar.gz file and then the
-C option followed by the installation folder. In this example the FMI Toolbox is installed in the $HOME folder.
Notice, this command overwrites existing files, but does not remove files, i.e license.lic is not changed.

ba@ba-desktop:~/Desktop$ tar -xvzf FMI_Toolbox-X.X-linux.tar.gz -C $HOME/

This creates a new folder called Modelon in $HOME where all the files are put in.

2.3.3. Set MATLAB path

The MATLAB path must include the path to the FMI Toolbox installation folder in order to enable the toolbox.
To to this, follow the procedure below.

1. In MATLAB change current directory to the installation folder of FMI Toolbox, e.g:

>> cd 'C:\Program Files (x86)\Modelon\FMI Toolbox X.X'

2. Run the setup function to set the MATLAB path

>> setup

2.3.4. Unattended installation

2.3.4.1. Windows

The Windows installer can be run unattended from the command prompt. The installer takes the arguments in
Table 2.7.

Table 2.7 Installer arguments

Arguments Description

/NCRC Disables the CRC check, unless CRCCheck force was
used in the script.

/S Runs the installer or uninstaller silently.

Installation

8

Arguments Description

/D Sets the default installation directory ($INSTDIR),
overriding InstallDir and InstallDirRegKey. It must
be the last parameter used in the command line and
must not contain any quotes, even if the path contains
spaces. Only absolute paths are supported.

MATLAB can be run from the command prompt, for more information see http://www.mathworks.se/help/mat-
lab/ref/matlabwindows.html. This can be used to setup the MATLAB path and install a license file.

In the example below, the installer is run from the command prompt. MATLAB is then started with a command
line argument that runs inside MATLAB. This argument changes current directory in MATLAB to where FMI
Toolbox is installed and then runs the setup function. setup updates and saves the MATLAB path and installs the
provided license file.

>"FMI Toolbox-X.X-win.exe" /S /D=C:\Program Files (x86)\Modelon\FMI Toolbox X.X
>matlab -r "cd 'C:\Program Files (x86)\Modelon\FMI Toolbox X.X';setup('C:\temp\license.lic', true);exit;"

For more information on how to install the license file, see the help for the setup function in MATLAB.

Note: The installer must run with administrator privileges to eliminate the User Account Control dialog that oth-
erwise appear when the installer is started.

Note: MATLAB must run with administrator privileges to make sure that the MATLAB path is properly saved.

2.3.4.2. Linux

The unattended installation procedure for FMI Toolbox on Linux is done in the following steps:

1. Extract the *.tar.gz file to the installation folder, see Section 2.3.2 for more information.

2. Update MATLAB path to include the FMI Toolbox files.

MATLAB can be run from the command prompt, for more information see http://www.mathworks.se/help/mat-
lab/ref/matlabunix.html. This can be used to setup the MATLAB path and install a license file.

In the example below, the installer is run from the command prompt. MATLAB is then started with a command
line argument that runs inside MATLAB. This argument changes current directory in MATLAB to where FMI
Toolbox is installed and then runs the setup function. setup updates and saves the MATLAB path and installs the
provided license file.

>tar -xvzf FMI_Toolbox-X.X-linux.tar.gz -C <install_dir>
>matlab -r "cd '<install_dir>/Modelon/FMI_Toolbox_X.X';setup('<license_file_dir>/license.lic', true);exit;"

For more information on how to install the license file, see the help for the setup function in MATLAB.

Installation

9

Note: MATLAB must run with administrator privileges to make sure that the MATLAB path is properly saved.

2.4. License information
The section references from below are part of Modelons license instructions for the Flex enabled products in
Chapter 9.

For instruction on how to retrieve a license file, see Section 9.1.

For instructions on how to install a license file, see Section 9.2.

For instructions on how to install a license server, see Section 9.3.

For trouble shooting and contacting Modelon support, see Section 9.4.

To use full version of FMI Toolbox, a FMI Toolbox license is required. To use the FMU export from Simulink,
a FMI Toolbox Coder add-on license is also required. The licenses has a linger time of 2 minutes. Linger time
means that the license stays checked out for the specified period of time beyond its check in. The license is checked
in when the MATLAB session is closed. This is a safety precaution in case that a MATLAB session is accidentally
closed or purposely restarted so that no other user checks out the license in between the MATLAB sessions.

Note that there is a function in MATLAB that can print useful license information, fmitoolbox_license. Use the
help command in MATLAB to get further information.

2.4.1. Demo mode

Running the program in demo mode limits the FMUs that can be used to the ones that are distributed as examples.

2.5. Uninstallation procedure

2.5.1. For Windows

FMI Toolbox provides an uninstaller. The following steps uninstalls the FMI Toolbox.

1. Make sure that MATLAB is closed so that all files can be removed.

2. Run the uninstaller that is found in the start menu or in the installation directory.

3. To complete the uninstallation, the search paths for FMI Toolbox in MATLAB must be manually removed.
Next time you start MATLAB, a list of missing path folder will appear in the command window. In MATLAB,
open the Set Path... dialog in the File menu and click Save.

2.5.2. For Linux

FMI Toolbox does not provide an uninstaller for Linux. The following steps uninstalls the FMI Toolbox.

Installation

10

1. Make sure that MATLAB is closed so that all files can be removed.

2. Remove the files in the installation folder using the rm -rf command in the terminal window.

In this example the FMI Toolbox was installed in the $HOME directory. To remove the whole Modelon
folder, type:

> cd $HOME
> rm -rf Modelon

In order to keep the license file in the Modelon/Common folder, do only remove the FMI Toolbox files with
the command:

> cd $HOME
> rm -rf Modelon/FMI_Toolbox-X.X/

3. To complete the uninstallation, the search paths for FMI Toolbox in MATLAB must be manually removed.
Next time you start MATLAB, a list of missing path folder will appear in the command window. In MATLAB,
open the Set Path... dialog in the File menu and click Save.

2.5.3. Unattended uninstallation

2.5.3.1. Windows

The Windows uninstaller can be run unattended from the command prompt. The uninstaller is found in the in-
stallation directory and must be run with the silent flag /S. Before the uninstaller is started, make sure that FMI
Toolbox is not used. The MATLAB path should be updated before the uninstaller is run. The following example
demonstrates how to uninstall FMI Toolbox:

> matlab -r "cd 'C:\Program Files (x86)\Modelon\FMI Toolbox X.X';remove;exit;"
> "C:\Program Files (x86)\Modelon\FMI Toolbox X.X\Uninstall.exe" /S

MATLAB is first started with a command line argument that runs inside MATLAB. This argument changes current
directory in MATLAB to where FMI Toolbox is installed and then runs the remove function. remove updates and
saves the MATLAB path.

The uninstaller is then run and removes all the files in the installation folder.

Note: The installer must run with administrator privileges to eliminate the User Account Control dialog that oth-
erwise appear when the installer is started.

2.5.3.2. Linux

The unattended uninstallation procedure for FMI Toolbox on Linux is done in the following steps:

1. Remove the FMI Toolbox path from the MATLAB path.

Installation

11

2. Remove the files in the installation folder using the rm -rf command.

The following example demonstrates how to uninstall FMI Toolbox:

> matlab -r "cd '$HOME/Modelon/FMI_Toolbox-X.X';remove;exit;"
> rm -rf $HOME/Modelon/FMI_Toolbox-X.X/

MATLAB is first started with a command line argument that runs inside MATLAB. This argument changes current
directory in MATLAB to where FMI Toolbox is installed and then runs the remove function. remove updates and
saves the MATLAB path.

The files are then removed.

2.6. Support
Support inquires are sent to support@modelon.com.

12

Chapter 3. Simulation with Simulink
3.1. Introduction

An FMU is a file containing functions for evaluation of the equations of a model. An FMU can be generated by
an FMI-compliant tool such as Dymola. An FMU model can be simulated in Simulink using an FMU block. The
FMU block loads an FMU model and can then be configured from the FMU setup window. The FMU block can
have input and output ports that makes it possible to incorporate the FMU model with other Simulink blocks. In
the next section, the basic steps for simulating an FMU model in Simulink are demonstrated. The functionality is
intuitive but it can be helpful to go through two simple examples showing some combinations of the functionalities
and how they can be used.

Generated FMUs for the FMI for Model Exchange (1.0/2.0) and the FMI for Co-simulation (1.0/2.0) standards
are supported. The FMI Toolbox has two Simulink blocks, one for each FMU kind (Model Exchange and Co-
Simulation). The blocks are partially inlined S-functions and are then supported by Simulink Coder/Real-Time
workshop.

3.2. Getting started

This tutorial gives a walk-through of the steps required to simulate an FMU using Simulink. In this walk-through,
the Model Exchange block loaded with FMI 1.0 FMUs is used but all the steps looks the same for other FMUs
if nothing else is mentioned.

1. Create a new Simulink model.

Start the Simulink Library Browser from MATLAB using the command:

>> simulink

and create a new model by clicking the New Model buttom. A new Simulink model window will appear.

Simulation with Simulink

13

Figure 3.1 Create a new Simulink model.

2. Add the FMU block to the Simulink model.

In the Simulink Library Browser, locate and select the FMI block in the tree view on the left side. On the
right side, two FMU blocks will appear. One for each FMI kind, FMU CS and FMU ME.

Figure 3.2 Locate the FMU block in Simulink Library Browser.

Simulation with Simulink

14

Drag the model exchange block into the Simulink model window. If the model to simulate is a Co-Simulation
FMU, the Co-Simulation block should be used instead.

Figure 3.3 Add the FMU block to the Simulink Model.

3. Load an FMU into the FMU block.

Double-click the FMU block to open the FMU setup window.

Simulation with Simulink

15

Figure 3.4 Load an FMU model in the FMU setup window.

Click the Load FMU button and locate your FMU file in the file browser that will appear. Click Open to
load the FMU model into the FMU block.

Simulation with Simulink

16

Figure 3.5 Load the FMU block by selecting an FMU model in the file browser.

If the FMU model has top level inputs or outputs they will show up as input and output ports on the block.
The example FMU used here, Mechanics_Rotational.fmu, has one input and three output ports. The FMU
file is found in the installation directory of FMI Toolbox under examples\me1\<platform>\Mechanics\.

4. Simulate the model.

To visualize the simulation results of the Mechanics_Rotational.fmu, a Scope block and a Mux block found
in the Simulink Library Browser are added to the model. A Sine Wave block is also added as source to the
input port. If an FMU does not have any top level outputs, other variables can be added as output ports. See
section Output ports for how to configure the output ports of the FMU block.

Simulate the FMU model by clicking the Start simulation button in the Simulink model window.

Simulation with Simulink

17

Figure 3.6 Simulate the Mechanics_Rotational FMU with one input signal and three output signals.

The simulation results for the variables w1, w1 and w1 are visualized in the Scope block. Double-click the
Scope block to make the Scope window appear.

Simulation with Simulink

18

Figure 3.7 Simulink Scope block visualize the results from the FMU above simulated from time 0 to 10.

3.3. FMU block properties

All configurations of the block described in this section are made within the FMU setup window. The FMU setup
window has six tabs, Parameters & Start Values, Outputs, Log, Model Data, Advanced and Coder. Block
configurations are made in the Parameters & Start Values, Outputs, Log, Advanced and Coder tabs whereas
general FMU information is contained in the Model Data tab. All tabs have the same meaning and general layout
for Model Exchange (1.0/2.0) and Co-Simulation (1.0/2.0) FMUs but details may differ, all these differences will
be mentioned.

3.3.1. Set parameters and variables start values

In the Parameters & Start Values tab, see Figure 3.8, all the parameter and variable information is found. The start
values can also be set here. Only variables and parameters with the start attribute set are listed. No inputs are shown.

Simulation with Simulink

19

Figure 3.8 Parameters & Start Values tab shows all parameter and variable information.

To access information of a variable, select the variable of interest. Different fields are then populated with infor-
mation. The descriptions of the different fields are found in the table below.

 Description
Description string of the variable.

 Value
Start value of variable or parameter. If trying to update
the value with a different data type, the update is ignored.

 Min/Max
Minimum value of variable (value ≥ min). Maximum
value of variable (value ≤ max).

 Type
Real/Integer/Boolean

Simulation with Simulink

20

The variable icons are described in the tables below.

Table 3.1 Variable icons for FMI 1.0 FMUs.

 Boolean Integer Real The colors of the nodes in the lists represent the different
data types, Boolean/Integer/Real.

 Parameters A parameter is marked with a P. The value of the param-
eter does not change after initialization.

 Variables A variable is marked with a V. A variable is either a
continuous or discrete variable. A discrete variable on-
ly changes during initialization and at event instants. A
continuous variable has no restrictions on value changes.

 Constants A constant is marked with a C. The value is fixed and
does not change.

Fixed initial value
Initial guess value

The shade of the icons indicates that the variable has ei-
ther a Fixed initial value(light icon) or a Initial guess
value(dark icon). A Fixed initial value has this value
after the model has been initialized. A Initial guess val-
ue may has been changed.

Table 3.2 Variable icons for FMI 2.0 FMUs.

 Boolean Integer Real The colors of the nodes in the lists represent the different
data types, Boolean/Integer/Real.

 Parameters A parameter is marked with P. The value of the param-
eter does not change during initialization.

 Calculated Parameters A calculated parameter is marked with cP. The value of
the parameter does not change after initialization.

 Local A local variable is marked with L. A local variable, its
value should not be used outside of the FMU.

Exact initial value
Guessed initial value
Calculated initial value

The shade of the icons indicates that the variable has
either an Exact initial value(light icon), Guessed ini-
tial value(slightly darker icon) or a Calculated initial
value(darkest icon). An Exact initial value has this val-
ue after the model has been initialized. A Guessed ini-
tial value may have been changed. A Calculated initial
value cannot be set and is not showed in this tab, only
in the Output tab, it is presented here for completion .

To set a start value, select the variable in the list and change the value in the value field next to Value. Press Enter
or the Set value button to set the value. A asterix(*) is added to the variable name in the list if the value is different

Simulation with Simulink

21

from the default. The value that is set can be an expression like sin(x) where x is a variable in the base workspace.
These expressions are evaluated just before the simulation starts.

To reset the value of a variable, select the variable in the list and click Reset and the default value will be set.

To reset all start values to the default, click the Reset All Values button.

3.3.2. Input ports

The input ports of the block are set according to the top level input variables in the FMU model. These are set when
the model is loaded and can not be changed. The input ports are scalar and the data type is set to the corresponding
type of the variable (integer, real, boolean). The name of the input port on the block is set to the name of the variable.

3.3.3. Output ports

The output ports of the block are by default set according to the top level outputs of the FMU model and is marked
with bold text. These can be both scalar or vector output ports. In the FMU setup window, Output tab, see
Figure 3.9, the output ports of the FMU block may be configured.

Figure 3.9 Outputs tab in the FMU setup window with 1 vector port and 4 scalar ports.

Simulation with Simulink

22

In the list to the left are all the variables that can be added as output ports on the FMU block. In the list to the right
are all the output ports that are currently set. The list to the right contains the variables that are selected as outputs
of the FMU block. The corresponding FMU block is shown in the Figure 3.10.

Figure 3.10 Output ports on the FMU block with the output configuration from the Figure above.

The nodes in the list to the right has a hierarchy with two levels. The first level has an icon with a right arrow and
represents a port that is seen on the FMU block. If a port has children, they have a blanc icon (level two-nodes).
These represent the variables that are contained in that output port. We call a port containing several outputs a
vector port and a port with no children a scalar port. All children in a vector port must be of the same data type.

Ports are added and removed using the Add >>, Add Vector>>... and << Remove buttons. These buttons are
sensitive to which nodes that are selected in the two lists. For example if trying to make an illegal add, the button
will get disabled, grayed.

To add a variable as an output port, select the variable in the left list and then select a port in the right list to insert
the port after. Click the Add >> button to add the port. It is possible to add multiple scalar ports simultaneously
by selecting multiple variables in the left list.

To create a vector output, select multiple variables in the left list. All variables must be of the same data type.
Select an existing port in the right list after which the new port will be inserted. Then click the Add Vector >>...

Simulation with Simulink

23

button and a input dialog box will appear that asks the user to enter a name of the port. Default port name is set to
the name of the first variable that was selected. Press OK to add the new port.

Figure 3.11 Input dialog box asks the user to enter the name of the vector port that will be added.

To add a variable to an already existing output vector port, select a child node in the vector port after which the
new variable should be inserted and click the Add >> button.

To rename a port, select the port to rename in the list to the right. The port name will appear in the Rename field
where the name can be changed, and then click the Set name button. Renaming a child in a vector output has no
visual effect on the FMU block.

To remove a port, select the port to remove and click the << Remove button. You can also remove a single child
variable in a vector output.

To change the position of a port on the FMU block, select the port you want to move in the list to the right and
use the Move Up and Move Down buttons.

To reset the output ports to default, use the Set default outputs button.

Simulation with Simulink

24

3.3.3.1. Direct Feedthrough

Figure 3.12 System with direct feedthrough.

Direct feedthrough in a Simulink block means that the output port depends directly on the input port. To solve an
algebraic loop, the input port must be configured for direct feedthrough. All input ports that are listed in the FMU
are set with direct feedthrough. The direct feedthrough concept corresponds to the direct dependency in the FMI
documentation. This means that even though all input ports to the FMU block in Simulink can be connected in an
algebraic loop, it may not be supported by the FMU. Due to the definition of the direct dependency, the output
ports in an FMU, lists the input ports that can be used in an algebraic loop.

The Output tab in the FMU setup window for the system above, is seen in Figure 3.13.

Simulation with Simulink

25

Figure 3.13 The output variable y sets some input with direct feedthrough.

An output port that depends directly on an input port has the icon with double arrows. This indicates that the
output port may be used in an algebraic loop. When an output port with direct feedthrough is selected, the Direct
Feedthrough button is enabled. This button opens a dialog box, listing the input ports that may be used in an
algebraic loop and that the output port depends directly on.

Simulation with Simulink

26

Figure 3.14 Dialog for the selected output port y that lists the input ports u1 and u2 it depends directly on.

3.3.4. FMU model information

In the Model Data tab general information of the FMU model is found, see Figure 3.15 and Figure 3.16. The
information is extracted from the FMU model and can not be changed.

Simulation with Simulink

27

Figure 3.15 The Model Data tab for an FMI 1.0 FMU.

Simulation with Simulink

28

Figure 3.16 The Model Data tab for an FMI 2.0 FMU.

3.3.5. Log

In the Log tab the user can configure the logging behavior of the block. In Figure 3.17 the Log tab is shown.

Simulation with Simulink

29

Figure 3.17 The block's logging can be configured from the Log tab.

3.3.5.1. Create result file

A Dymola formated result file in textual format is created if the check box Write simulation result to file is
checked. Please note that the Write simulation result to file option may affect the simulation speed for large
models. This file contains the result data from all the variables, parameters and constants.

The result file is created in the current directory and is named to the FMUs model name with the extension
_results.txt.

The result file can be loaded into the MATLAB workspace using the loadDSResult script. To extract the result
data of a variable the getDSVariable function is used. A short example is given here on how to use these functions.

Assume that an FMU named CoupledClutches with the variable coupledClutches.J2.a has successfully been
simulated. To plot the result of this variable, load the result file in the MATLAB workspace.

>> ResData=loadDSResult('CoupledClutches_results.txt');

Extract the simulation result of the variable coupledClutches.J2.a and plot.

>> [T,Y]=getDSVariable(ResData,'coupledClutches.J1.w');
>> plot(T,Y);

Simulation with Simulink

30

Figure 3.18 Plotted simulation results loaded from a result file that was generated from a Simulink simulation.

3.3.5.2. Logger

The log messages from the FMU are printed to the Command Window. In the drop down menu, a list of log levels
are listed that can be used to filter the messages. The selected log level prints the selected log level messages and
all other messages that has a higher precedence in the list, i.e if verbose is selected, all messages are printed since
it has lowest precedence. The log levels listed in precedence order starting with the lowest.

1. verbose

2. info

3. warning

4. error (default)

5. fatal

6. nothing

3.3.6. Advanced

In the Advanced tab the user can change some of the block configurations regarding the block behavior and
simulation settings. In this tab different options are available for the different blocks (FMU ME and FMU CS) and the

Simulation with Simulink

31

different FMI versions (1.0 and 2.0). The Tolerances panel is always available for the FMU ME block and for FMI
2.0 FMUs in the FMU CS block. The Sample times panel is always available in the FMU CS block. In Figure 3.19
the Co-Simulation block's advanced tab is shown with an FMI 2.0 FMU loaded.

Figure 3.19 The block behavior can be configured from the advanced tab. This is a figure of the FMU CS 2.0
advanced tab.

3.3.6.1. Block icon and mask

The FMU block´s mask is set by a callback function. This function overwrites the Drawing commands in the Mask
Editor every time the block has been changed. To modify the block icon, click the Set block icon button and
choose your icon image in the file browser that opens. By the default, the check box Use icon in FMU if there is
any is checked and uses the model.png file in the FMU file. If there is no such file, the block is set to be white.

Simulation with Simulink

32

3.3.6.2. Tolerances (Not for FMU CS 1.0)

An FMU model may solve equations internally up to a certain accuracy based on some tolerances. Before the
simulation starts, a relative tolerance can be set by the simulation environment to the FMU model. There is also
an indicator flag for whether or not the FMU model should use this tolerance. If the FMU model should use the
relative tolerance set by the simulation environment, then check the check box Use tolerance controlled FMU.
By default this it is unchecked. To use Simulink's relative tolerance, check the Use Simulink´s relative tolerance.
Note, the relative tolerance is only available when variable step solvers are used. If the Use Simulink´s relative
tolerance is unchecked, a relative tolerance can be typed in the Relative tolerance field below.

Figure 3.20 The Tolerance panel in the Advanced tab for the model exchange block.

3.3.6.3. Sample times (FMU CS block only)

The Sampling interval is the length of time steps used when simulating the FMU model. The Sampling offset is
the delay before the first time step is taken after the simulation started.

Figure 3.21 The Sample times panel in the Advanced tab for the co-simulation block.

3.3.6.4. Reload FMU

When an FMU model is reloaded, new output ports that are added in the FMU model can be added last in the
FMU block. This is done if the Add new output ports when the model is reloaded option is checked. Default
is unchecked.

The block name is updated when an FMU model is loaded or reloaded. It is set to the model name. To disable this
automatic update, uncheck Update block name automatically.

3.3.6.5. Find FMU file on Model load

There are three different alternatives that can be configured for how the FMU file should be found when the
model(*.mdl) is opened.

Simulation with Simulink

33

1. Relative path to the Model directory.

2. Absolute path.

3. File name search.

This alternative searches for the FMU file in the following order:

i. Model(*.mdl) directory

ii. Current working directory

iii.MATLAB path

Default is that relative path is used.

3.3.7. Coder

The Coder tab is used configure properties for the block that influence the code generation when the model is built
for a specific target with Simulink Coder.

Figure 3.22 The FMU setup window with the Coder tab selected.

Enable Use shared library to generate code that loads the shared library of the FMU.

When the target is an FMU, the block´s shared libraries will be contained in the generated FMUs resources. For
targets other than FMUs, a resource folder is created in the same directory as the target.

The rti1006.tlc target does only work with source code FMUs.

Simulation with Simulink

34

3.3.8. Scripting FMU block

The following functions are available for scripting with the FMU blocks. Use the help command in MATLAB to
get more information about the functions.

Table 3.3 Functions available for scripting with the FMU blocks.

Functions Short description

fmuGetInputPortsSimulink Returns the input ports from an FMU block.

fmuGetModelDataSimulink Returns model data.

fmuGetOptionSimulink Returns an FMU block option.

fmuGetOutputPortsSimulink Returns the output ports from an FMU block.

fmuGetValueSimulink Returns the start value for a variable.

fmuLoadFMUSimulink Loads an FMU block with an FMU file.

fmuReloadFMUSimulink Reloads an FMU block.

fmuResetAllOutputPortsSimulink Resets all output ports to default.

fmuResetAllSimulink Resets all parameter and start values, and all output
ports.

fmuResetAllValuesSimulink Resets all parameter and start values.

fmuResetValueSimulink Resets one or multiple parameter and start values.

fmuSetOptionSimulink Sets an FMU block option.

fmuSetOutputPortsSimulink Sets the output ports for an FMU block.

fmuSetValueSimulink Sets a parameter or start value in an FMU block.

fmuStructuredPortsSimulink Uses the structured naming of the ports to make them
buses.

fmuRemoveStructuredPortsSimulink Removes the bus structure added by fmuStructured-
PortsSimulink.

Here is an example of a script running a Van der Pol oscillator model with different start values x1_0 and x2_0. The
output of the Simulink model VDP.mdl are the variables x1 and x2. The phase plane for the Van der Pol oscillator
is shown in Figure 3.23.

model_name = 'VDP.mdl'; %Simulink model
block_name = 'VDP/VDP'; %FMU block in the Simulink model
simopt = simset('solver','ode15s'); %Solver used
final_time=20;
N_points=11;

x1_0=linspace(-3,3,N_points);

Simulation with Simulink

35

x2_0=zeros(size(x1_0));

%Simulink model must be open to set parameters and start values
open_system(model_name);

for k=1:N_points
 %Set initial conditions in model
 fmuSetValueSimulink(block_name,'x1_0',x1_0(k));
 fmuSetValueSimulink(block_name,'x2_0',x2_0(k));
 %Simulate
 [T,Y]=sim(model_name,[0,final_time],simopt);
 %Plot simulation results
 plot(Y(:,1),Y(:,2));
 hold on
end
xlabel('x1');
ylabel('x2');

Figure 3.23 Phase plane for the Van der Pol oscillator that was generated from the script above.

3.3.9. Load FMU model

To load an FMU model into the FMU block, open the FMU setup window by double clicking the FMU block.
Click the Load FMU button in the sidebar to the right and a file browser will appear. Locate and select the FMU
file to load the FMU block with and click Open. If a Simulink model with an FMU block is opened but the path
to the FMU file is changed, a file browser will appear that prompts you to relocate the FMU file. The FMU file
will then be reloaded.

Simulation with Simulink

36

3.3.10. Reset an FMU model

To reset an FMU model, use the Reset All button found in the Setup tab. This operation resets all values to default
and sets the output ports to default.

3.3.11. Reload FMU model

If an FMU file has been changed it can be reloaded. To reload an FMU, click the Reload FMU button. Start values
and ports are updated in the new FMU.

This feature is useful if an FMU that has been imported into Simulink has been changed. In this case, the reload
feature attempts to keep the configuration of the FMU block even though the updated FMU may have different
variables than the original FMU.

3.3.12. Add Structured Ports to the FMU Block

If an FMU Block has inputs or outpus that have a structured naming (model.bus.signal) then this can be used to
create a structure of buses based on this naming. To do this click the Structured Ports button.

For a practical example see the Configure ports using structural naming example in Section 3.5.3.

3.3.13. Using the filter functions

To ease the use of the variable lists, different filter functions is at hand to search in the lists. A summary of how
they work and should be used is described below.

Table 3.4 Filtering for FMI 1.0 variables

Filter variables by name. Use the Clear button to reset
the filter function.

Filter on Category. There are two defined categories,
Variables and Parameters. Use the drop down list to
select the category to filter. Choose between Parame-
ters, Variables or Both. Variables can be Continuous
or Discrete which can be filtered using the Variability
drop down list.

Filter on Variability. This function only apply to Vari-
ables and is disabled for Parameters. A variable can be
either discrete or continuous.

Simulation with Simulink

37

Filter on fixed Variables. If Fixed initial values is se-
lected, only variables with fixed initial values are shown.
If Initial guess values is selected, only variables with ini-
tial guess values are shown.

Table 3.5 Filtering for FMI 2.0 variables

Filter variables by name. Use the Clear button to reset
the filter function.

Filter on Causality. There are three defined categories,
Parameters, Calculated parameters and Local variables.
Use the drop down list to select the category to filter.
Choose between Parameters, Calculated parameters,
Local variables or All.

Filter on Variability. There are five defined categories,
Constant, Fixed, Tunable, Discrete and Continuous. Use
the drop down list to select the category to filter. Choose
between Constant, Fixed, Tunable, Discrete, Contin-
uous or All.

Filter on Initial value type. If Exact initial values is
selected, only variables with Exact initial values are
shown. If Guessed initial values is selected, only vari-
ables with initial value types Approx are shown.

3.4. FMU block and Simulink Coder
It is possible to use Simulink Coder with a Simulink model containing an FMU block loaded with a source code
FMU. This makes it possible to access the capability of many Simulink Coder targets for configurations of Simulink
blocks and FMUs, for example building a Simulink model with an FMU to a real-time platform.

The FMU block is tested with the targets listed in Table 2.5 and FMUs from Dymola versions listed in Table 2.6.
However, other configurations are expected to work if:

Simulation with Simulink

38

1. The FMI version of the source code FMU is 2.0

2. The targets compiler can compile C89/C90 (ANSI) and fmit_portable_stdint.h

3. The source code FMU can be compiled with the targets compiler

FMI 1.0 is only supported for Dymola FMUs.

Check with tool vendors if their exported source code FMUs can be compiled with the compiler of the desired
Simulink Coder target. If there is any problem with the compilation of fmit_portable_stdint.h it may be pos-
sible to extend it to work for your target/compiler. You can open the file in MATLAB with the command

>> edit(fullfile(fmitoolboxdir(), 'fmitoolbox', 'fmuBlock', 'fmit_portable_stdint.h'))

where more information is given.

Note that Dymola FMUs from 2015 FD01 and forward needs to be exported from Dymola using
Advanced.AllowMultipleInstances=false if you your target platform is the dSPACE rti1006.tlc target. This
may be true for similar targets and the compilation error will then look like: error: thread-local storage not
supported for this target.

Note that Dymola source FMUs from 2015 FD01 and forward always are compiled with NO_FILE defined. This is
because there is no guarantee that the target platform have a file system.

Note that building a model containing many FMUs may cause name conflicts when compiling the C code. This
might happen if it contains two 1.0 FMUs or two 2.0 FMUs with the same model identifier.

3.5. Examples
Two examples covering the basic functionalities of the FMU block are described in this section. The first example
demonstrates how to set start values of the FMU model in the GUI. The second example demonstrates how to
configure the output ports.

3.5.1. Changing start values and using the filter functions

This example shows how to change the start values of different variables in a robot model from the Modelica
Standard Library. To do this, the different filter functions will be used. The FMU file used in this example is found
in the installation directory of FMI Toolbox under /examples/me1/<platform>/Robot/ and it is generated by
Dymola.

The robot model is taken from the Modelica MultiBody Library and is a demonstration model of the Manutec 3d
robot. The robot model contains variables corresponding to the starting angle of some robot axis. These variables
are named startAngle. To find these variables, type startAngle in the field next to the Filter button and click
Filter. In Figure 3.24 we see the result after filtering.

Simulation with Simulink

39

Figure 3.24 Result after filtering for "startAngle" in a Robot model.

To set a new start value, select the variable and type the new value in the Value: field. Then click the Set value
button.

To set the start value of a variable that is discrete and has initial guess values, filter for this so no other variables
and parameters are shown. To do that, select Variables in the Category drop down list. All Parameters will now
disappear from the list. Select Discrete in the Variability drop down list and then Initial guess values in the Fixed
drop down list.

The filtered results are shown in Figure 3.25 below. The icons of the nodes that are visual indicates that they are
variables due to the V, the dark color indicates they are initial guess values and the pinkish color that they are
Boolean values.

Simulation with Simulink

40

Figure 3.25 Filtering result for: Variables + Discrete + Initial guess values .

3.5.2. Configure outputs

This example shows how to change the output ports of a vehicle model. We will start by removing and renaming
output ports and then add a new port, a vector port.

The output configuration we start with is seen in Figure 3.26 below. These are the top level output variables that
are set when the model is loaded.

Simulation with Simulink

41

Figure 3.26 The output configuration of the vehicle model we start with.

In order to rename the output port u[X], select the port in the right list. The field next to the Set name button will
then be populated with the node´s name, u[X]. Type a new name, u[1],u[3], in the field and click the Set name
button. The new name is immediately set and it can be seen in Figure 3.27 below.

Simulation with Simulink

42

Figure 3.27 The name of the top most port was changed from u[X] to u[1],u[3].

In the next step the child variable u[2] will be removed from the vector output port u[1],u[3] that just had its
name changed. The vector port r_0[X] will also get removed. This is done in two steps. First, select the child node
u[2] in the vector port v[1], u[3] and click the << Remove button. Secondly, select the other node, r_0[x] and
click the << Remove button. The result is seen in Figure 3.28 below.

Simulation with Simulink

43

Figure 3.28 Output port configuration after the variable u[2] and the whole vector port r_0[X] have been removed.

Now add a vector port consisting of the vector variables vehicleAcceleration.y. Filtering for this name results
in the tree variables y[1], y[2] and y[3] visualized in the left list, seen in Figure 3.29. Select these variables by
Ctrl+mouse click all of them. In the list to the right, select the port it should be added to. The port u[1],u[3] is
selected in the right list here.

Now click the Add vector >>... button. A input dialog box appear where port name y[X] is set. The final result
of how the block output port configuration looks like in the FMU setup window and on the FMU block is seen in
the two figures below, Figure 3.29 and Figure 3.30.

Simulation with Simulink

44

Figure 3.29 Final output port configuration of the vehicle FMU model.

Simulation with Simulink

45

Figure 3.30 FMU block with the final output port configuration.

3.5.3. Configure ports using structural naming

This example show how the Structured Ports feature can be used. We will start by adding some new outputs to
the CoupledClutches example and then take advantage of the new ports structural naming.

Open the Coupledclutches model and go to the Output tab. Mark the variables coupledClutches.J1.J and
coupledClutches.J1.phi and add them as outputs by clicking the Add Scalar >> button, see figure Figure 3.31. The
FMU blocks port configuration should now be the same as seen in figure Figure 3.32.

Simulation with Simulink

46

Figure 3.31 coupledClutches.J1.J and coupledClutches.J1.phi marked to be added as outputs.

Simulation with Simulink

47

Figure 3.32 FMU block with additional outputs.

Now click the Structured Ports button, see figure Figure 3.33. This should have changed the FMU blocks port
configuration. To see what happened add a Bus Selector block and connect it to the new output coupledClutches
as displayed in figure Figure 3.34.

Simulation with Simulink

48

Figure 3.33 The Structured Ports button highlighted.

Simulation with Simulink

49

Figure 3.34 FMU block with Structured Ports and a Bus Selector block.

Now double click the Bus Selector block and examine the 'Signals in the bus', it should look similar to
figure Figure 3.35. The structured names has been used to create a bus structure as output! Note that for
coupledClutches.J1.phi you can see that coupledClutches is the name of the port and J1 and phi are signal names
in the bus structure.

Simulation with Simulink

50

Figure 3.35 The signals in the Bus as shown in the Bus Selector GUI.

This feature can be used when inporting FMUs that have a lot of inputs/outputs with an advanced structure. Note
that changes to the outputs, realoding FMUs and loading FMUs can only be done in the mode with regular ports.

3.5.4. Build target containing an FMU block

In this example, a Simulink model containing an FMU block, will be built for the FMU Co-Simulation 1.0 target.
Note that this example is not distributed in the FMI Toolbox example folder and that the FMU is a source code
FMU. For building targets containing an FMU that is not a source code FMU see Section 3.3.7.

1. The source code FMU that is used in this example is generated with Dymola 2014. The model can be seen in
the block diagram in Figure 3.36 . The model has one input signal and output signal where the output signal
is equal to the integrated input signal.

Simulation with Simulink

51

Figure 3.36 Block diagram view of the FMU model in Dymola.

2. Create a new Simulink model and add the FMU block for Co-Simulation to the model.

3. Load the FMU block with the Co-Simulation FMU. Make sure that the FMU contains the source code. See
Section 3.2 for more details.

4. Add an input port and an output port and connect the blocks.

Simulation with Simulink

52

Figure 3.37 Simulink model with the FMU loaded.

5. Configure the model for FMU Co-Simulation export target, see Chapter 5 for details.

6. Build the Simulink model target. A Co-Simulation FMU will now be created in the current directory.

7. Create a new Simulink model and import the newly created FMU.

8. Connect a sine signal and a scope to the input and output port on the FMU block.

Simulation with Simulink

53

Figure 3.38 The FMU generated from Simulink is loaded into a new model.

9. Simulate the model. The results from the scope is seen in Figure 3.39.

Simulation with Simulink

54

Figure 3.39 Simulation results of the integrated sine wave from the imported Co-Simulation FMU.

3.5.5. Build rti1006.tlc target containing an FMU block

In this example, a Simulink model containing an FMU block for Model Exchange, will be built and run on the
dSPACE´s DS1006 platform. Note that this example is not distributed in the FMI Toolbox example folder and that
the FMU is a source code FMU. The example assumes that the appropriate dSPACE software is installed and that
the RTI Platform Support RTI1006 is activated.

1. The source code FMU that is used in this example is generated with Dymola 2014. The model can be seen in
the block diagram in Figure 3.40 . The model has one input signal and output signal where the output signal is
equal to the integrated input signal. Make sure that Dymola exports the model as an FMU for Model Exchange
1.0 and includes the source code for the model.

Simulation with Simulink

55

Figure 3.40 Block diagram view of the FMU model in Dymola.

2. Create a new Simulink model and add the FMU block for Model Exchange to the model.

3. Load the FMU block with the Model Exchange FMU. Make sure that the FMU contains the source code. See
Section 3.2 for more details.

4. Add an input port and an output port and connect the blocks.

Simulation with Simulink

56

Figure 3.41 Simulink model with the FMU loaded.

5. Configure the model for the rti1006.tlc target if it is not already done. In this example, the new Simulink model
is automatically configured for the rti1006.tlc target when it was created.

6. Build the Simulink model. The Simulink model compiles and downloads the executable to the dSPACE DS1006
system.

7. The output signals from the FMU block can now be viewed from dSPACE´s ControlDesk® Next Generation,
see Figure 3.42.

Simulation with Simulink

57

Figure 3.42 A Variable Array and a Plotter instrument displaying the parameter values and output signal in
dSPACE`s ControlDesk Next Generation.

3.5.5.1. Set start values and parameters

In order to set a start value, one can use the script function or GUI, seeSection 3.3.1, and then rebuild the model
according to the above procedure Section 3.5.5. An additional approach to set a new start value is to change
the parameter from inside ControlDesk Next Generation and then restart the simulation. That can be achieved in
following steps:

1. Add the parameters to change start values for, to a Variable Array instrument in the ControlDesk Next Gen-
eration layout.

2. Add the simState parameter to the Variable Array. It can be located in the main group of the variable descrip-
tion file. simState is a parameter to read or set the simulation state of the application. This variable can take
on the states STOP (0), PAUSE (1), or RUN (2).

3. Change the simState value to 0, to stop the simulation.

4. Change the start values of the parameters.

5. Change the simState value to 2, to start the simulation.

6. The FMU uses the new start values to instantiate and initialize the model.

58

Chapter 4. Simulation in MATLAB
4.1. Introduction
An FMU model can be loaded in to the MATLAB environment and be simulated using MATLAB´s ODE solvers.
Start values and parameters can be set, and if the model has inputs, these can be set with user defined input data.
The output from the simulation can be configured by the user, such as variables and result files. FMI versions 1.0
and 2.0 for Model Exchange and Co-Simulation are supported.

4.2. A first example
An FMU model loaded in the MATLAB workspace is a class object. An FMU model class is created with the
loadFMU function, or one of the specific model class constructors FMUModelME1, FMUModelME2, FMUModelCS1 or
FMUModelCS2. loadFMU automatically chooses the right constructor and loads and instantiates the model. When
using the constructors directly, the FMU has to be manually instantiated.

Table 4.1 Different FMU model object creators

FMU class constructor and factory functions FMU type

loadFMU Will check the FMU and use the appropriate construc-
tor. Also calls the instatiate method of the returned class
object.

FMUModelME1 Model Exchange 1.0

FMUModelME2 Model Exchange 2.0

FMUModelCS1 Co-Simulation 1.0

FMUModelCS2 Co-Simulation 2.0

The version independent way to load an FMU into MATLAB is:

>> fmu = loadFMU('bouncingBall.fmu');

The variable fmu is now representing the FMU model. The model description file is parsed and all the FMI functions
are ready to be called.

Once loaded, the model can be simulated using the simulate function. Due to the differences between Model
Exchange and Co-Simulation models, the inputs to the function have slightly different meanings. The minimal
set of arguments required is the time interval to be simulated, which for ME models can be specified either as an
interval [tStart, tEnd] or as a vector of time points, [t_0, t_1, ..., t_end]. In the first case the returned
result is sampled at each solver step, while in the second case the output will be sampled at the specified time
points. Co-Simulation models, on the other hand, require a set of communication points, defining the simulation
intervals for the model's internal solver. This means that the second notation is always used, and if only [tStart,
tEnd] is supplied, the start and end points will be the only samples returned.

Simulation in MATLAB

59

The most general call to simulates is thus

>> [tout, yout, ynames] = fmu.simulate([tStart : stepSize : tEnd])

For Co-Simulation models, simulate will call the internal solver of the model, while Model Exchange models
will be simulated using one of MATLAB's solvers (the default is ode15s).

The simulation can also be controlled by options provided to simulate, e.g.:

>> fmu = loadFMU('bouncingBall.fmu'); %as before
>> outdata.name = {'h','v'};
>> opts = odeset('RelTol', 1e-6);
>> [tout, yout, yname] = fmu.simulate([0,2.5], 'Output', outdata, 'Options', opts);
>> plot(tout,yout);
>> legend(yname);

Here, additional arguments for the outputs are specified in the outdata struct. Specifically, the variable names in
outdata.name decide which model variables are given as output in yout. For a full list of the options available,
see the function documentation in MATLAB.

In the above example a bouncing ball model is simulated. The model simulates a ball that is dropped from a height
and bounces onto the ground.

Figure 4.1 Simulation result for the bouncingBall.fmu model. The blue curve corresponds to the height of the ball
and the red curve corresponds to the velocity of the ball.

The full call sequence to load and simulate a model includes loading, instantiating, initializing and simulating. For
ease of use, instantiation is handled by loadFMU and initialization by simulate (unless the model is previously

Simulation in MATLAB

60

initialized). The extra calls can be used to achieve more fine-grained control over the model setup. For example,
assuming that the model is a 1.0 Model Exchange FMU, the previous example may be rewritten as:

>> fmu = FMUModelME1('bouncingBall.fmu');
>> fmu.fmiInstantiateModel(); % different calls for 1.0/2.0 and ME/CS
>> fmu.initialize(); % default initialization
>> fmu.simulate([0 3]);

4.3. Using the FMU model classes
This section describes in more detail how the FMU model classes work. The examples used for demonstration
apply to both the Model Exchange classes and the Co-Simulation classes.

4.3.1. Handle class

The FMU classes are derived from the handle class which means that variables are references (handles) to an
object instance rather than complete copies of the object. This makes FMU objects behave simliarly to figures
in MATLAB. A consequence of this is that an object cannot be copied in the usual MATLAB manner, only the
reference to it. This is demonstrated in the example below, where fmu and fmu_copy refer to the same object,
causing changes to one to affect the other as well.

>> fmu = loadFMU('bouncingBall.fmu');
>> fmu.get('h')

ans =

 1

>> fmu_copy = fmu;
>> fmu_copy.set('h', 2)
>> fmu.get('h')

ans =

 2

The FMU model class handles the destruction of the model when all its references are cleared, e.g when clear
all is called or when MATLAB terminates.

4.3.2. Calling functions

The FMU model class' methods can be called in two different ways. There is the one used in the examples
above, with the class instance before the function name separated with a dot: <obj>.<function(...)>. The other

Simulation in MATLAB

61

way to call a class function is to use the function name first, and the class instance as the first input argument:
<function(<obj>, ...)>.

>> fmu = loadFMU('bouncingBall.fmu');
>> fmu.get('h') % Alternative calling convention 1.
ans =

 1

>> get(fmu, 'h') % Alternative calling convention 2.
ans =

 1

The documentation of the functions uses calling convention 2, i.e the first input argument is the class instance,
in this case FMU:

>> help FMUModelME1.get % or another FMU class
 get returns the values of variables
 VALUES = get(FMU, NAMES) gets VALUES for the variable NAMES. NAMES is a
 ...

One advantage of using the function call with dot notation is that auto completion can be used (if it is enabled in
the MATLAB preferences). By starting to type a class name or function and then press the <Tab> button, a list
of alternatives is displayed in a tool tip. The up and down arrows on the keyboard can be used to select the right
function, and then press enter. Note, the tab completion may list functions that are not valid to use. Use only the
documented functions that are found in fmi_information for that class, see below.

Figure 4.2 Use the Tab button for auto completion.

4.3.3. Help

To get more information about the classes, the MATLAB help command can be used.

For each class, ClassName.fmi_information lists all available functions, e.g for the FMUModelME1 class, the
following functions are listed:

>> help FMUModelME1.fmi_information
FMI Model Exchange 1.0 information
 FMI for Model Exchange 1.0 specification
 https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf

Simulation in MATLAB

62

 Help functions
 FMUModelME1
 eventUpdate
 getValue
 ...

 All FMI functions are listed here:
 fmiCompletedIntegratorStep
 fmiEventUpdate
 ...

 See also fmi_status, event_info, loadFMU

To get help from a specific class function, the class name must be included before the function name and separated
with a .:

>> help FMUModelME1.fmiGetVersion
 fmiGetVersion returns the FMI version for model exchange
 VERSION = fmiGetVersion(FMU) returns the VERSION of the
 FMU´s implemented model exchange interface. FMU is an
 fmu model, see FMUModelME1. This MATLAB class supports
 only FMI version 1.0 for model exchange.

 See also fmi_information

4.4. Examples
The following three examples cover how some of the class functions can be used. Special attention is given to
the simulate function, describing how different input and output configurations are set up. The simulate function
works in the same manner for both Model Exchange and Co-Simulation if nothing else is mentioned.

The simulate function takes the time span to simulate and the class instance as mandatory input arguments. All
other arguments are optional and are set as name-value pairs:

[TOUT, YOUT, YNAME] = simulate(FMU, TSPAN, 'NAME1',VALUE1,...)

The properties that can be set and what values they have are described in more detail in the help documentation
in MATLAB.

4.4.1. Set start values and parameters

Setting start values to an FMU is done using FMU model class methods. set and get are two methods that in-
voke the low level FMI function for setting and getting values. This examples demonstrates how to run multiple

Simulation in MATLAB

63

simulations with different parameter values. The FMU is a model of the Van der Pol oscillator, generated from a
Modelica compiler using the Modelica code below:

model VDP
 // State start values
 parameter Real x1_0 = 0;
 parameter Real x2_0 = 1;
 // The states
 Real x1(start = x1_0);
 Real x2(start = x2_0);
 // The control signal
 input Real u;
equation
 der(x1) = (1 - x2^2) * x1 - x2 + u;
 der(x2) = x1;
end VDP;

A pre-compiled FMU for Model Exchange 1.0 is included in the FMI Toolbox distribution. Using this FMU, the
following script does a parameter sweep for the initial values of the states x1 and x2:

VDP_fmu_path = 'VDP.fmu'; %Path to the FMU file.

%Load the FMU
fmu = FMUModelME1(VDP_fmu_path);
%Define initial conditions
final_time = 20;
N_points = 11;
x1_0 = linspace(-3, 3, N_points);
x2_0 = zeros(size(x1_0));

output.name={'x1', 'x2'};
for k = 1:N_points
 %Set initial conditions in model
 fmu.fmiInstantiateModel;
 fmu.set('x1_0', x1_0(k));
 fmu.set('x2_0', x2_0(k));
 %Simulate
 [tout, yout, yname] = fmu.simulate([0, final_time], 'Output', output);
 %Plot simulation results
 plot(yout(:,1), yout(:,2));
 hold on
end
xlabel(yname(1));
ylabel(yname(2));

This script should generate a plot similar to the one below:

Simulation in MATLAB

64

Figure 4.3 Phase plane for the Van der Pol oscillator.

4.4.2. Simulation with inputs

In this example, inputs are used in the simulation using both table data and a MATLAB function handle. The FMU
model that is simulated is the first example model in Mechanics.Rotational from the Modelica Standard Library. It
has one input variable, u1, and three outputs, w1, w2, w3. The model is simulated for 10 seconds and both methods
for generating an input signal are described here.

Create a class instance for the FMU model:

>> fmu = loadFMU('Mechanics_Rotational.fmu');

The property name used to set an input signal is Input. The value set for the Input property is a cell array with
structs where each struct is representing an input signal. Such a struct must have two fields, one with the input
variable name and one with the signal data.

Simulation in MATLAB

65

The variable name is set in the struct field name. The second field, containing the signal data, can have one of two
field names: vec or fcn. vec indicates the use of table data, and its use varies slightly between Model Exchange
and Co-Simulation models. For Model Exchange, the input is provided as an array with sample times in the first
column and signal values in the second:

>> inconf{1}.name = 'tau';
>> t = [0:0.1:10]';
>> data = sin(t);
>> u1data = [t', data'];
>> inconf{1}.vec = u1data;

For Co-Simulation models, providing the sample times is not necessary as these are determined by the communi-
cation points. Thus, only the signal values are provided in this case:

>> inconf{1}.name = 'tau';
>> t = [1:0.1:10];
>> inconf{1}.vec = sin(t);

The other way of providing input is to use a MATLAB function handle. Then, the struct field fcn is used instead:

>> inconf{1}.name = 'tau';
>> inconf{1}.fcn = @(t)sin(t);

An input function should take a single input argument (the independent variable) and return a scalar value to be used
as the current input sample. Since sampling is handled internally in the simulate function, there is no difference
in input between Model Exchange and Co-Simulation models.

In this example we choose the function handle to generate the input signal for u1 when simulating. The simulation
results for the default output variables w1, w2, w3, corresponding to angular velocities of the inertias in the model,
are visualised in the plot below.

>> fmu_me = loadFMU('me1/Mechanics_Rotational.fmu');
>> fmu_cs = loadFMU('cs1/Mechanics_Rotational.fmu');
>> inconf{1}.name = 'tau';
>> inconf{1}.fcn = @(t)sin(t);
>> [time_me, yout_me, yname_me] = fmu_me.simulate([0,10], 'Input', inconf);
>> [time_cs, yout_cs, yname_cs] = fmu_cs.simulate(0:0.1:10, 'Input', inconf);
>> subplot(1,2,1); plot(time_me,yout_me); title('Model Exchange'); legend(yname_me);
>> subplot(1,2,2); plot(time_cs,yout_cs); title('Co-simulation'); legend(yname_cs);

Simulation in MATLAB

66

Figure 4.4 Simulation results for angular velocities of inertias in the Mechanics model FMU.

4.4.3. Simulation with configured output

This example shows how the output from the simulation function can be configured. We use the CoupledClutches
model, found in the Modelica Standard Library, and simulate it for 10 seconds both as Model Exchange and Co-
Simulation. The output is configured to exclude the default output variables, i.e., all top level output variables in the
FMU, and instead contain the variables clutch3.flange_a.phi and clutch3.tau. The output is also configured
to create a Dymola-styled result file. After the simulation, the commands for loading and visualising the result
from the result file in MATLAB are described and compared with the output result that is created in the MATLAB
workspace.

The property name for configuring the output is Output. The value is a struct with different fields. The different
fields are described below. In this example, we call the struct outconf.

To turn off the default output results, the outputs of the FMU model, the struct field toplevel is set to false:

>> outconf.toplevel = false;

Add the names of the variables that should be included in the output by adding the names in a cell array. This cell
array is set to the struct field name.

>> outconf.name = {'coupledClutches.J4.a','coupledClutches.J2.a'};

The last output configuration is to set the writefile field to true so that a Dymola-styled result file is created.

Simulation in MATLAB

67

>> outconf.writefile = true;

Finally, simulate the model and plot the results:

>> fmu = loadFMU('coupledClutches.fmu');
>> [time, yout, yname] = simulate(fmu, [0,10], 'Output', outconf);
>> plot(time,yout(:,1)); title(yname(1));

The resulting plot is seen in Figure 4.5.

Figure 4.5 Plot using the results created in the Matlab workspace for the J2.a variable.

The simulation also generates a result file that is written to disk. This file contains the results from all the variables
and parameters in the model. To load the same variable as above into the MATLAB workspace, the result file
must first be loaded:

>> resData = loadDSResult('FMUTests.FMUs.CoupledClutches_results.txt');

To retreive and plot the variable, use the getDSVariable function:

>> [T, Y] = getDSVariable(resData, 'coupledClutches.J2.a');
>> plot(T, Y);

Simulation in MATLAB

68

Figure 4.6 Plot using the result from file. The same J2.a variable is plotted.

4.4.3.1. Using custom solver (Model Exchange only)

If the model is instantiated with a model exchange class (FMUModelME1 or FMUModelME2), the simulate function
has the property Solver and Options. These are set to change the MATLAB solver and the options used by this
solver. The solver property value is a string with the name of the solver. The options value is created using the
odeset function.

In the example script below the default solver ode15s is replaced with ode23s. The solver options sets the relative
tolerance to 1e-7 and the absolute tolerance to 1e-5.

>> fmu = loadFMU('coupledClutches.fmu');
>> odeopt = odeset('RelTol', 1e-7, 'AbsTol', 1e-5);
>> fmu.simulate([0,10], 'Options', odeopt, 'Solver', 'ode23s');

4.5. Upgrading to FMI 2.0

4.5.1. Converting from FMI 1.0 to FMI 2.0

When upgrading from FMI 1.0 to FMI 2.0, changes to existing scripts will be necessary. This section is a quick
summary for reusing old scripts that are written for FMI 1.0 FMUs.

Changes when upgrading are presented in Table 4.2. Note that while the initialize method exists for all model
types and versions, it takes different arguments depending on whether the model is an ME 1.0, CS 1.0 or a 2.0 FMU.

Simulation in MATLAB

69

Another large change is the re-design of the high level functions for setting and getting values in the FMU. The new
methods, set and get, gives better type check and can be used together with the ScalarVariable(1/2) classes. It
is recommended to use these new methods, and setValue/getValue in the FMI 2.0 interface will give warnings
about being deprecated.

Usage of the low-level FMI functions will have to be upgraded according to the Table 4.3. Accessing properties
of the variables are now handled through the ScalarVariable(1/2) classes, see Table 4.4.

Table 4.2 Initialization and convenience function conversion table

FMI 1.0 FMI 2.0

fmiInitialize initialize. Initialization can also be performed auto-
matically by the simulate function.

fmiInitializeSlave initialize. Initialization can also be performed auto-
matically by the simulate function.

fmiEventUpdate eventUpdate

getValue get (getValue exists but is deprecated)

setValue set (setValue exists but is deprecated)

modelData Removed, use get methods for the different attributes.
Variable counts should be obtained by counting ele-
ments in variable lists.

Table 4.3 Low-level FMI functions conversion table

FMI 1.0 FMI 2.0

fmiFreeSlaveInstance fmiFreeInstance

fmiFreeModelInstance fmiFreeInstance

fmiGetModelTypesPlatform fmiGetTypesPlatform

fmiGetNominalContinuousStates fmiGetNominalsOfContinuousStates

fmiGetStateValueReferences fmu.getStates().valueReference

fmiInstantiateSlave fmiInstantiate (consider using loadFMU as it also in-
stantiates the FMU)

fmiInstantiateModel fmiInstantiate (consider using loadFMU as it also in-
stantiates the FMU)

fmiResetSlave fmiReset

Table 4.4 Variable property functions conversion table

FMI 1.0 FMI 2.0

getVariableAlias getScalarVariable(name).aliasSet

Simulation in MATLAB

70

FMI 1.0 FMI 2.0

getVariableAliasBase getScalarVariable(name).baseAlias

getVariableCausality Has a different meaning in the FMI 2.0 standard, see the
ScalarVariable2 class

getVariableDataType getScalarVariable(name).type

getVariableDescription getScalarVariable(name).description

getVariableFixed Does not exist in the FMI 2.0 standard

getVariableMax getScalarVariable(name).getMax

getVariableMin getScalarVariable(name).getMin

getVariableNominal getScalarVariable(name).getNominal

getVariableStart getScalarVariable(name).start

getVariableValueref getScalarVariable(name).valueReference

getVariableVariability Has a different meaning in the FMI 2.0 standard, see the
ScalarVariable2 class

4.5.2. Using both FMI 1.0 and FMI 2.0 in scripts

To make it easier to write scripts that can load and use both 1.0 and 2.0 FMUs, the functions set, get, eventUpdate,
initialize, aliasSet and baseAlias have also been added to the FMI 1.0 interface. Now only the initialization
and FMI specific properties/functions needs to be handled separately for the different FMI versions. These different
cases can be constructed using the method fmiGetVersion.

71

Chapter 5. FMU export from Simulink
5.1. Introduction

A Simulink model can be exported as an FMU and imported in an FMI-compliant tool such as SimulationX or
Dymola. This section describes how a Simulink model can be exported as an FMU. Code from a Simulink model
is generated by Simulink Coder/Real-Time Workshop and is then wrapped in an FMU for FMI version 1.0 or 2.0
and Model Exchange or Co-Simulation .

5.2. Getting started

This tutorial gives a walk-through of the steps required to export an FMU for Model Exchange from Simulink.

1. Configure mex compiler.

Simulink Coder/Real-Time Workshop selects the C compiler to be used. In order to provide a hint of which
compiler to use, configure the mex compiler by executing the following command in MATLAB.

>> mex -setup

See Table 2.4 for the full list of supported compilers.

2. Create a simple Simulink model.

Start Simulink to create a simple model.

>> simulink

The model used in this example integrates an input signal and outputs the integrated value.

FMU export from Simulink

72

Figure 5.1 Create a new simple Simulink model.

3. Open the Configuration Parameters dialog.

Open the Configuration Parameters dialog by clicking Simulation -> Configuration Parameters.... The
dialog may look different depending on which MATLAB version is being used.

FMU export from Simulink

73

Figure 5.2 Configuration Parameters dialog for the simple Simulink model.

4. Go to Real-Time Workshop or Code Generation.

Click on the Real-Time Workshop or Code Generation node in the tree view to the left. The name depends
on the MATLAB version being used.

FMU export from Simulink

74

Figure 5.3 Go to the Real-Time Workshop or Code Generation tab.

5. Select target.

Select System target file by clicking on the Browse... button. Select fmu_me1.tlc in the dialog that is open
and then click OK.

FMU export from Simulink

75

Figure 5.4 Select the system target file fmu_me1.tlc in the System Target File Browser.

6. Build target.

Click Apply in lower right corner of the Configuration Parameters dialog and then press the Build Model
button in the Simulink main window. In Figure 5.5 the files generated by the target are listed.

Figure 5.5 Files generated by the target.

7. Test FMU.

The FMU block in the FMI Toolbox can be used to test the generated FMU. To import the FMU in Simulink
see Chapter 3. In Figure 5.6 the created FMU is imported and a sinus signal is connected to the FMU input
port and a scope is connected to the output port. The results can be seen in Figure 5.7; an integrated sinus
signal with amplitude 1 and frequency 1 rad/s.

FMU export from Simulink

76

Figure 5.6 Created FMU imported in FMI Toolbox.

Figure 5.7 Simulation result, an integrated sinus signal with amplitude 1.0.

FMU export from Simulink

77

5.3. Simulink Coder targets for FMU export

To export an FMU from Simulink, a target (System target file) must be selected. The following system target files
generates FMUs according to the different FMU types and versions of the FMI standard. See Section 1.2 for a
general description of the different options.

Table 5.1 Overview of system target files

Targets (System target files) FMU type FMI version

fmu_me1.tlc Model Exchange 1.0

fmu_me2.tlc Model Exchange 2.0

fmu_cs1.tlc Co-Simulation 1.0

fmu_cs2.tlc Co-Simulation 2.0

The different targets are documented in subsections below. The Simulink model must be configured according to
the requirements and limitations of the targets. The target may otherwise be unsuccessfully built.

For details of how to configure a Model Exchange target, see Section 5.6.

For details of how to configure a Co-Simulation target, see Section 5.5.

To select a target in Simulink, open the Configuration Parameters dialog and go to the Real-Time Workshop/
Code Generation tab (the name depends on which MATLAB version is being used), see Figure 5.8. Click on the
Browse... button to selected the System target file . In the browser dialog select one of the system target files for
FMU export, e.g fmu_me1.tlc for exporting as FMI 1.0 Model Exchange, and click OK, see Figure 5.9. This will
enable the FMU target in Simulink and a FMU Export tab will be visible in the tree view to the left.

FMU export from Simulink

78

Figure 5.8 Real-Time Workshop or Code Generation tab selected in the Configuration Parameters dialog.
Select one of the FMU export system target files e.g fmu_me1.tlc.

Figure 5.9 System Target File Browser.

FMU export from Simulink

79

All Simulink default settings are valid for building the target. Note that the C compiler must be selected (for some
MATLAB versions) before the FMU target can be built, see Section 5.4 for more information.

The model configuration in Simulink is mainly controlled from the Configuration Parameters dialog. This doc-
umentation only provides a brief description of the settings in the Configuration Parameters. For a detailed de-
scription see MATLAB´s documentation.

5.4. Selecting MEX C compiler
The FMU export targets relies on the MATLAB built in functions setup_for_visual.m and setup_for_visual_x64.m
to setup the appropriate MSVC C compiler environment. See the MATLAB help for these functions for more
information. In order to provide a hint (for some MATLAB versions) of which compiler these function chooses, one
can configure the regular mex compiler using the following command in the MATLAB and follow the instructions.

>> mex -setup

Note that the compiler Simulink Coder/Real-Time Workshop choose to use, must be supported, see Table 2.4.

5.5. Co-Simulation export
Co-Simulation specific information for FMU export is described in these sub sections.

5.5.1. Synchronization of time

The Co-Simulation FMU targets are derived from a grt based target that includes the fixed step solver used in
the Simulink model. The solver and time synchronization mechanism generated by Simulink Coder is compiled
into the FMU. The FMU keeps the internal synchronization mechanism generated by Simulink Coder in sync with
external solver/master algorithm during simulation of the FMU. The Simulink Coder synchronization of time is
based on an integer clock system which advances in time by a increasing an integer value (clock tic). The real time
in the model is calculated from the sample time in the Simulink model and the current clock tic.

A Co-Simulation FMU advances in time by calling an FMI do-step1 function. The do-step function takes real
values, current simulation time (tc) and the step size (hc), as input arguments to calculate the next simulation
time (tc + hc). The do-step function increases the clock tic of the model until it is equal to or only less then one
sample time before the next simulation time (in other words, increases clock tick as long as sample time * clock
tic <= tc+hc is valid).

Note that the step size (hz) argument to the FMI function should correspond to the sample time used in the Simulink
model when the model is exported, otherwise the FMU may have trouble to synchronize the Simulink Coder clock
system with the external solver/master algorithm.

1do-step corresponds to the FMI 2.0 function fmi2DoStep and FMI 1.0 function fmiDoStep.

FMU export from Simulink

80

5.5.2. Capability flags

A summary of how the FMI standard capability flags are set in the Co-Simulation FMUs are described in Table 5.2
and Table 5.3. For a detailed description of the capability attributes, see FMI standard.

Table 5.2
FMI 1.0 capability flags Value

canHandleVariableCommunicationStepSize True

canHandleEvents False

canRejectSteps False

canInterpolateInputs False

maxOutputDerivativeOrder 0

canRunAsynchronuously False

canSignalEvents False

canBeInstantiatedOnlyOncePerProcess False

canNotUseMemoryManagementFunctions True

Table 5.3
FMI 2.0 capability flags Value

needsExecutionTool False

canHandleVariableCommunicationStepSize True

canInterpolateInputs False

maxOutputDerivativeOrder False

canRunAsynchronuously False

canBeInstantiatedOnlyOncePerProcess True

canNotUseMemoryManagementFunctions True

canGetAndSetFMUstate False

canSerializeFMUstate False

providesDirectionalDerivative False

FMU export from Simulink

81

5.5.3. Configuration Parameters

5.5.3.1. Solver

Table 5.4 Configuration Parameters -> Solver tab options.

Option Comment and value

Type: Only Fixed-step solvers are supported.

Start time: Used as value to the FMI attribute startTime in the
DefaultExperiment element.

Stop time: Used as value to the FMI attribute stopTime in the De-
faultExperiment element.

5.5.3.2. Optimization

Table 5.5 Configuration Parameters -> Optimization tab options.

Option Comment and value

Inline parameters Enable/Disabled are valid values.

5.5.3.3. Real-Time Workshop/Code Generation

Table 5.6 Configuration Parameters -> Real-Time Workshop/Code Generation tab options.

Option Comment and value

System target file: fmu_cs1.tlc or fmu_cs2.tlc

Language: C

TLC options:

Generate makefile Enabled

Make command: make_rtw

Template makefile: fmu_cs1_default_tmf or fmu_cs2_default_tmf

Selected objective: Unspecified

Check model before generating code: Off. Other values may also be valid such as On (pro-
ceed with warnings) and On (stop for warnings).

Generate code only Disabled

FMU export from Simulink

82

FMU Export

Table 5.7 Configuration Parameters -> Real-Time Workshop/Code Generation -> FMU Export tab options.

Option Comment and value

Create black box FMU Enable this option if only the necessary minimum in-
formation should be exposed in the FMU. Only inputs
and outputs will be exposed for Co-Simulation FMUs
and additionally states, derivatives and event indicators
with neutral names for Model Exchange FMUs. De-
fault is disabled.

Structured names for parameters If enabled, the parameter variable names will be struc-
tured as specified in the FMI standard. For example, a
name could be: subsystem.block.parameter. This op-
tion is enabled by default.

Include internal signals If enabled, additional signals will be exposed in the ex-
ported FMU. The purpose of this is to make it easier
to debug the FMU. The additional variables will have
causality local. If Include internal signals is enabled,
the optimization parameter Signal storage reuse needs
to be disabled. More information about Include inter-
nal signals can be found in Section 5.8. Include inter-
nal signals is disabled by default.

Zip program: Path to a custom zip tool that should be used for com-
pressing the FMU, only available on Windows. De-
fault value is an empty string which means the FMI-
Toolbox uses its own implementation in Java. The
tool compresses the FMU files into a single FMU file,
*.fmu and must use the deflate algorithm. The pro-
gram and options are called like: "<ZipProgram>"
<ZipOptions> "<OutputFolder>\<modelName>.fmu"
"<FMUFilesDir>*". <ZipProgram> and <ZipOp-
tions> corresponds to the value set in these two fields
respectively. If for example 7-Zip is preferred over the
Java implementation use: C:\Program Files\7-Zip
\7z.exe

Zip options: Options passed to the zip-tool, only available on Win-
dows. This option is ignored if the default Java imple-
mentation is used. Default value is an empty string.
The compression method used must be deflate in ac-
cordance with the FMI standard. If for example 7-Zip

FMU export from Simulink

83

Option Comment and value

is preferred over the Java implementation use: a -r -
tzip

Report

Table 5.8 Configuration Parameters -> Real-Time Workshop/Code Generation -> Report tab options.

Option Comment and value

Create code generation report Enable/Disable

Launch report automatically Enable/Disable

Comments

Table 5.9 Configuration Parameters -> Real-Time Workshop/Code Generation -> Comments tab options.

Option Comment and value

Include comments Enable/Disable

Simulink block / Stateflow object comments Enable/Disable

MATLAB source code as comments Enable/Disable

Show eliminated blocks Enable/Disable

Verbose comments for SimulinkGlobal storage class Enable/Disable

Symbols

Table 5.10 Configuration Parameters -> Real-Time Workshop/Code Generation -> Symbols tab options.

Option Comment and value

Maximum identifier length: Any value that is valid for Simulink.

Use the same reserved names as Simulation Target Enable/Disable

Reserved names:

Custom code

Table 5.11 Configuration Parameters -> Real-Time Workshop/Code Generation -> Custom code tab options.

Option Comment and value

Use the same custom code settings as Simulation Tar-
get

Disable

Include custom C code in generated: Not supported

Include list of additional: Used to supply additional resources for User defined S-
Functions. See, Section 5.5.4.

FMU export from Simulink

84

Debug

Table 5.12 Configuration Parameters -> Real-Time Workshop/Code Generation -> Debug tab options.

Option Comment and value

Verbose build Enable/Disable

Retain .rtw file Enable/Disable

Profile TLC Enable/Disable

Start TLC debugger when generating code Enable/Disable

Start TLC coverage when generating code Enable/Disable

Enable TLC assertion Enable/Disable

5.5.4. Support for user defined S-Function blocks

For the Co-Simulation targets (fmu_cs1.tlc and fmu_cs2.tlc) the source file (*.c) for each S-Function is used.
During code generation, Simulink coder also requires a compiled shared library of the S-function, but this libary
will not be included in the exported FMU.

Any additional include directories, source files or libraries needed by the S-function must be specified in the Cus-
tom Code tab, see Figure 5.10.

FMU export from Simulink

85

Figure 5.10 Custom Code tab and options for including additional resources.

Additional compiler flags can be added in the Code Generation tab after selecting the fmu_cs1.tlc or fmu_cs2.tlc
target by modifying the Make command, see Figure 5.11. An example of modification would be to change the
Make command to

'make_rtw FMIT_INTERMEDIATE_LIB_DIR=DEFAULT FMIT_ADDITIONAL_CFLAGS=-DMY_DEFINE'

this will add -DMY_DEFINE as a compiler flag for the target.

FMU export from Simulink

86

Figure 5.11 Code Generation tab and the field Make command.

It is recommended that the S-function follow the guidelines for writing non-inlined S-functions, see http://
www.mathworks.se/help/rtw/ug/s-functions-for-code-generation.html?#f53130 for more information. The S-func-
tion may not call into MATLAB, e.g using mexCallMATLAB.

5.6. Model Exchange export
Model Exchange specific information for FMU export is described in this section.

5.6.1. Configuration Parameters

5.6.1.1. Solver

Model Exchange FMUs are exported without an embedded solver, but the code generated by Simulink Coder dif-
fers depending on solver type. If a fixed-step solver is selected in the Simulink model when exporting, the solver's
step time is set as the sample time of the model, and each sample hit will cause an event even if the underlying
dynamics behave in a continuous way. With variable-step solvers, the sampling is replaced by zero-crossing de-
tection, generating events only when required by the model dynamics.

The preferred setting for ME FMU export should be a variable-step solver, as this prevents excessive events caused
by sampling embedded into the FMU and allows event detection with greater precision than the selected step size.
The exported FMU can still be simulated by both fixed-step and variable-step solvers.

FMU export from Simulink

87

Table 5.13 Configuration Parameters -> Solver tab options.

Option Comment and value

Type: All variable-step and fixed-step solvers are supported,
but variable-step solvers should be preferred due to dif-
ferences in the generated code.

Start time: Used as value to the FMI attribute startTime in the
DefaultExperiment element.

Stop time: Used as value to the FMI attribute stopTime in the De-
faultExperiment element.

Relative tolerance: Used as value to the FMI attribute tolerance in the De-
faultExperiment element if a VariableStep solver is
selected. It is not set otherwise.

5.6.1.2. Optimization

Table 5.14 Configuration Parameters -> Optimization tab options.

Option Comment and value

Inline parameters Enable/Disabled are valid values.

5.6.1.3. Real-Time Workshop/Code Generation

Table 5.15 Configuration Parameters -> Real-Time Workshop/Code Generation tab options.

Option Comment and value

System target file: fmu_me1.tlc or fmu_me2.tlc

Language: C

TLC options:

Generate makefile Enabled

Make command: make_rtw

Template makefile: fmu_me1_default_tmf or fmu_me2_default_tmf

Selected objective: Unspecified

Check model before generating code: Off. Other values may also be valid such as On (pro-
ceed with warnings) and On (stop for warnings).

Generate code only Disabled

FMU export from Simulink

88

FMU Export

Table 5.16 Configuration Parameters -> Real-Time Workshop/Code Generation -> FMU Export tab options.

Option Comment and value

Support precompiled shared library S-functions (e.g
*.mexw64)

Build model containing precompiled S-functions. De-
fault value is disabled. See, Section 5.6.2.

Support precompiled object S-functions (e.g *.obj).
Takes precedence over precompiled shared library (e.g
*.mexw64)

Link with S-function´s object file. Takes precedence
over precompiled shared library. Default value is dis-
abled. See, Section 5.6.2.

Compile and link with MATLAB. Must be enabled if
any precompiled file depends on MATLAB

Compile and link with MATLAB. Default value is dis-
abled. See, Section 5.6.2.

Create black box FMU Enable this option if only the necessary minimum in-
formation should be exposed in the FMU. Only inputs
and outputs will be exposed for Co-Simulation FMUs
and additionally states, derivatives and event indicators
with neutral names for Model Exchange FMUs. De-
fault is disabled.

Structured names for parameters If enabled, the parameter variable names will be struc-
tured as specified in the FMI standard. For example, a
name could be: subsystem.block.parameter. This op-
tion is enabled by default.

Include internal signals If enabled, additional signals will be exposed in the ex-
ported FMU. The purpose of this is to make it easier
to debug the FMU. The additional variables will have
causality local. If Include internal signals is enabled,
the optimization parameter Signal storage reuse needs
to be disabled. More information about Include inter-
nal signals can be found in Section 5.8. Include inter-
nal signals is disabled by default.

Zip program: Path to a custom zip tool that should be used for com-
pressing the FMU, only available on Windows. De-
fault value is an empty string which means the FMI-
Toolbox uses its own implementation in Java. The
tool compresses the FMU files into a single FMU file,
*.fmu and must use the deflate algorithm. The pro-
gram and options are called like: "<ZipProgram>"
<ZipOptions> "<OutputFolder>\<modelName>.fmu"
"<FMUFilesDir>*". <ZipProgram> and <ZipOp-
tions> corresponds to the value set in these two fields
respectively. If for example 7-Zip is preferred over the

FMU export from Simulink

89

Option Comment and value

Java implementation use: C:\Program Files\7-Zip
\7z.exe

Zip options: Options passed to the zip-tool, only available on Win-
dows. This option is ignored if the default Java imple-
mentation is used. Default value is an empty string.
The compression method used must be deflate in ac-
cordance with the FMI standard. If for example 7-Zip
is preferred over the Java implementation use: a -r -
tzip

Report

Table 5.17 Configuration Parameters -> Real-Time Workshop/Code Generation -> Report tab options.

Option Comment and value

Create code generation report Enable/Disable

Launch report automatically Enable/Disable

Comments

Table 5.18 Configuration Parameters -> Real-Time Workshop/Code Generation -> Comments tab options.

Option Comment and value

Include comments Enable/Disable

Simulink block / Stateflow object comments Enable/Disable

MATLAB source code as comments Enable/Disable

Show eliminated blocks Enable/Disable

Verbose comments for SimulinkGlobal storage class Enable/Disable

Symbols

Table 5.19 Configuration Parameters -> Real-Time Workshop/Code Generation -> Symbols tab options.

Option Comment and value

Maximum identifier length: Any value that is valid for Simulink.

Use the same reserved names as Simulation Target Enable/Disable

Reserved names:

FMU export from Simulink

90

Custom code

Table 5.20 Configuration Parameters -> Real-Time Workshop/Code Generation -> Custom code tab options.

Option Comment and value

Use the same custom code settings as Simulation Tar-
get

Disable

Include custom C code in generated: Not supported

Include list of additional: Not supported

Debug

Table 5.21 Configuration Parameters -> Real-Time Workshop/Code Generation -> Debug tab options.

Option Comment and value

Verbose build Enable/Disable

Retain .rtw file Enable/Disable

Profile TLC Enable/Disable

Start TLC debugger when generating code Enable/Disable

Start TLC coverage when generating code Enable/Disable

Enable TLC assertion Enable/Disable

5.6.2. Support for user defined S-Function blocks

For the Model Exchange targets (fmu_me1.tlc and fmu_me2.tlc) each S-Function need to be precompiled, either
as a shared library S-Function (*.mex32 or *.mex64) or an object S-Function (*.obj). Then the respective options
Support precompiled shared library S-functions and Support precompiled object S-functions can be used
and if any of the precompiled files depends on MATLAB the option Compile and link with MATLAB must
be enabled.

It is recommended that the S-function follow the guidelines for writing non-inlined S-functions, see http://
www.mathworks.se/help/rtw/ug/s-functions-for-code-generation.html?#f53130 for more information. The S-func-
tion may not call into MATLAB, e.g using mexCallMATLAB.

If an S-function uses parameter values in its mdlStart callback, these will always take on their default values, re-
gardless of parameters set in the exported FMU. They will still be marked as FMU parameters, since Simulink
Coder and FMI Toolbox cannot know where in the S-function code they are used. It is recommended that S-func-
tions inlined into ME FMUs initialize their parameters in a later callback, e.g. during the first call to mdlOutputs.

Note: including a compiled S-Function in the FMU will give the FMU the same dependencies as that of the S-
Function. In this case, the FMU will typically only run on machines that have MATLAB installed.

FMU export from Simulink

91

5.7. Parameters
This section describes the support for different Simulink parameter settings and how Simulink parameters are
exposed as FMI parameters in an FMU.

All Simulink parameters setting are supported for the FMU targets. For a detailed list of parameter settings in
Simulink and how they are exposed in the FMU, see Table 5.22. Note that parameters with start values NaN and
Inf will be calculated parameters in the FMU.

Table 5.22 Parameter settings for code generation in Simulink.
Parameter settings in Simulink FMU targets Supported FMU parameter

fmu_cs1.tlc Yes parameter

fmu_cs2.tlc Yes tunable parameter

fmu_me1.tlc Yes parameter

Default settings

fmu_me2.tlc Yes parameter

fmu_cs1.tlc Yes parameter

fmu_cs2.tlc Yes tunable parameter

fmu_me1.tlc Yes parameter

Global (tunable) parameter-
sa with storage class: Simulink-
Global()

fmu_me2.tlc Yes parameter

fmu_cs1.tlc Yes Not exposed

fmu_cs2.tlc Yes Not exposed

fmu_me1.tlc Yes Not exposed

Inline parametersa

fmu_me2.tlc Yes Not exposed
aOption is set from the Configuration Parameters -> Optimization tab options

The names of the Global tunable parameters are explicitly specified by the user. For other parameters, their names
in the exported FMU will reflect the structure of the model. More precisely, they will have names on the form
{"subsystem name".}"block name"."block parameter name". Where the content in {} is repeated zero or more
times depending on the number of nested Subsystems the Simulink block is placed in.

5.8. Internal signals
Using the option Include internal signals will make additional internal signals available in an exported FMU. The
purpose of this is to make it easier to debug the FMU. The option is available in Simulation > Model Configuration
Parameters > Code Generation > FMU Export. Include internal signals will not have any effect if the export
option Create black box FMU is enabled. If Include internal signals is enabled, the optimization parameter
Signal storage reuse needs to be disabled. Include internal signals is disabled by default.

FMU export from Simulink

92

Not all internal signals can be exposed in the generated FMU. Which signals are exposed also depends on whether
exporting as a Model Exchange FMU or a Co-Simulation FMU. Block reduction may also affect which variables
will be visible, see: https://se.mathworks.com/help/simulink/gui/block-reduction.html. To understand which addi-
tional signals will be exposed we will be looking at two simple examples.

Figure 5.12 A system that when exported as an FMU with internal signals will have the additional shown variables.
Which variables are exposed depends on if exporting as an Model Exchange FMU or a Co-Simulation FMU.

First we look at the system found in Figure 5.12. Here we can see that no block inputs are exposed in the resulting
FMU in either case. In the Model Exchange case, block outputs and their respective named signals will be exposed.
In the Co-Simulation case, block outputs and named signals will only be exposed if they connect to a block and not
when they connect to model outputs. The variables will have structured names in the exported FMU, for example
Gain1.Out as shown in the figure. All internal signals that are exposed as variables in the exported FMU will have
the causality local, which are read only variables.

Figure 5.13 A system that when exported as an FMU with internal signals will have no additional variables at this
level in the system. See Subsystem1 in Figure 5.14 and Subsystem2 in Figure 5.15.

Figure 5.14 A subsystem that when exported as an FMU with internal signals will have the additional shown
variables. In this subsystem, the same variables are exposed when exporting as a Model Exchange FMU compared
to a Co-Simulation FMU. This is Subsystem1 of the system found in Figure 5.13

FMU export from Simulink

93

Figure 5.15 A subsystem that when exported as an FMU with internal signals will have the additional shown
variables. Which variables are exposed depends on if exporting as a Model Exchange FMU or a Co-Simulation
FMU. This is Subsystem2 of the system found in Figure 5.13

Secondly we look at the system found in Figure 5.13. This system is comprised of two subsystems where each sub-
system contains two gain blocks, Subsystem1 can be seen in Figure 5.14 and Subsystem2 can be seen in Figure 5.15.
In Figure 5.13 we can see that no additional variables will be exposed at the top level when connecting subsystems.
Signals that have not been given a name will also not be exposed, as seen in Figure 5.14 and Figure 5.15. In the
Model Exchange case, outputs from non-subsystem blocks in subsystems and associated named signals will be
visible. In the Co-Simulation case, outputs from non-subsystem blocks in subsystems and associated named signals
will be visible if they indirecly or direcly connect to a non-subsystem block and not a top level output.

A limitation of the internal signals is that the structured naming is not merged with the structured naming of the
parameters. That is, the parameters for a subsystem may not be displayed together with the internal signal variables
in some importing tools.

5.8.1. Test points

It is possible to make more signals and outputs available in exported FMU by using test points. General informa-
tion about what test points are can be found here: https://se.mathworks.com/help/simulink/ug/working-with-test-
points.html. Test points can be used to expose signals between subsystems as variables in the exported FMU. All
variables associated with test points in the exported FMU will have a name that starts with TestPoints and will
have the causality local.

Figure 5.16 A system that is the same as the one found in Figure 5.13 but with added test points. The additional
exposed variables are shown, which will be available in both Model Exchange and Co-Simulation FMUs.

In Figure 5.16 test points are added to all three of the named signals. Signals coming from top system inputs will
not be exposed even if we add test points to them. Signals coming from subsystem outputs will be exposed if and
only if they are named.

FMU export from Simulink

94

5.9. Supported data types

Supported data types in the FMU export are the same as those supported by Simulink, see Table 5.23. Simulink
defines a Boolean to have the values 1 for true and 0 for false.

Table 5.23 Supported data types in Simulink.

Name Description

double Double-precision floating point

single Single-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

To view the data types supported for different blocks, execute the following command in the MATLAB Command
Window.

>> showblockdatatypetable

Simulink data types are mapped to FMI data types according to Table 5.24 below.

Table 5.24 Simulink data types conversion to FMI data types table.

Simulink data type FMI 1.0 data type FMI 2.0 data type

double fmiReal fmi2Real

single fmiReal fmi2Real

int8 fmiInteger fmi2Integer

uint8 fmiInteger fmi2Integer

int16 fmiInteger fmi2Integer

uint16 fmiInteger fmi2Integer

int32 fmiInteger fmi2Integer

uint32 fmiInteger fmi2Integer

Simulink Boolean values fmiBoolean fmi2Boolean

FMU export from Simulink

95

Complex input and output ports are NOT supported, since there is no corresponding data type in the FMI standard.
Complex parameters will not be exposed in the FMU.

Fixed-point input and output ports are NOT supported, since there is no corresponding data type in the FMI stan-
dard. Fixed-point parameters will not be exposed in the FMU.

For more information about data types in Simulink, go to http://www.mathworks.se/help/simulink/ug/work-
ing-with-data-types.html.

5.10. Supported blocks
The tables below lists all blocks that have been tested. If the Comment column is empty, the block is fully supported.
If the Comment for a block is not empty, it may indicate that the usage of the block is restricted or not supported.

All blocks are tested using using a variable time step solver for the Model Exchange target and a fixed step solver for
the Co-Simulation target. The blocks has not been tested using frame based sampling mode. Frame based sampling
mode requires a Signal Processing Blockset license.

Table 5.25 FMI blocks.

Block Comment

fmu_cs_lib/FMU CS See table Table 2.6 for supported source-code FMUs.
See Section 3.3.7 for using FMUs with shared libraries.

fmu_me_lib/FMU ME See table Table 2.6 for supported source-code FMUs.
See Section 3.3.7 for using FMUs with shared libraries.

Table 5.26 Continuous blocks.

simulink/Continuous/Integrator

simulink/Continuous/Integrator Limited

simulink/Continuous/Integrator, Second-Order

simulink/Continuous/Integrator, Second-Order Limited

simulink/Continuous/State-Space

simulink/Continuous/Transfer Fcn

simulink/Continuous/Zero-Pole

simulink/Continuous/PID Controller

simulink/Continuous/PID Controller (2DOF)

simulink/Continuous/Transport Delay

simulink/Continuous/Variable Time Delay Partial supported. Generates different results.

FMU export from Simulink

96

simulink/Continuous/Variable Transport Delay Partial supported. Generates different results.

simulink/Continuous/Derivative Partial supported. Derivative approximation is depen-
dent on the length of the integrator step which causes
the results to be different.

Table 5.27 Discontinuities blocks.

simulink/Discontinuities/Saturation

simulink/Discontinuities/Dead Zone

simulink/Discontinuities/Rate Limiter

simulink/Discontinuities/Saturation Dynamic

simulink/Discontinuities/Dead Zone Dynamic

simulink/Discontinuities/Rate Limiter Dynamic

simulink/Discontinuities/Backlash Partial supported. Generates different results.

simulink/Discontinuities/Relay

simulink/Discontinuities/Quantizer

simulink/Discontinuities/Hit Crossing

simulink/Discontinuities/Coulomb & Viscous Friction

simulink/Discontinuities/Wrap To Zero

Table 5.28 Discrete blocks.

simulink/Discrete/Unit Delay

simulink/Discrete/Integer Delay (renamed in 2011b to
Delay)

simulink/Discrete/Delay (new since 2011b)

simulink/Discrete/Tapped Delay

simulink/Discrete/Discrete-Time Integrator

simulink/Discrete/Discrete Transfer Fcn

simulink/Discrete/Discrete Filter

simulink/Discrete/Discrete Zero-Pole

simulink/Discrete/Difference

simulink/Discrete/Discrete Derivative

simulink/Discrete/Discrete State-Space

simulink/Discrete/Transfer Fcn First Order

FMU export from Simulink

97

simulink/Discrete/Transfer Fcn Lead or Lag

simulink/Discrete/Transfer Fcn Real Zero

simulink/Discrete/Discrete PID Controller

simulink/Discrete/Discrete PID Controller (2DOF)

simulink/Discrete/Discrete FIR Filter

simulink/Discrete/Memory

simulink/Discrete/First-Order Hold

simulink/Discrete/Zero-Order Hold

Table 5.29 Logic and Bit Operations blocks.

simulink/Logic and Bit Operations/Logical Operator

simulink/Logic and Bit Operations/Relational Operator

simulink/Logic and Bit Operations/Interval Test

simulink/Logic and Bit Operations/Interval Test Dy-
namic

simulink/Logic and Bit Operations/Combinatorial Logic

simulink/Logic and Bit Operations/Compare To Zero

simulink/Logic and Bit Operations/Compare To Con-
stant

simulink/Logic and Bit Operations/Bit Set

simulink/Logic and Bit Operations/Bit Clear

simulink/Logic and Bit Operations/Bitwise Operator

simulink/Logic and Bit Operations/Shift Arithmetic

simulink/Logic and Bit Operations/Extract Bits

simulink/Logic and Bit Operations/Detect Increase

simulink/Logic and Bit Operations/Detect Decrease

simulink/Logic and Bit Operations/Detect Change

simulink/Logic and Bit Operations/Detect Rise Positive

simulink/Logic and Bit Operations/Detect Rise Nonneg-
ative

simulink/Logic and Bit Operations/Detect Fall Negative

simulink/Logic and Bit Operations/Detect Fall Nonpos-
itive

FMU export from Simulink

98

Table 5.30 Lookup Tables blocks.

simulink/Lookup Tables/Lookup Table

simulink/Lookup Tables/Lookup Table (2-D)

simulink/Lookup Tables/Lookup Table (n-D)

simulink/Lookup Tables/Prelookup

simulink/Lookup Tables/Interpolation Using Prelookup

simulink/Lookup Tables/Direct Lookup Table (n-D)

simulink/Lookup Tables/Lookup Table Dynamic

simulink/Lookup Tables/Sine

simulink/Lookup Tables/Cosine

Table 5.31 Math Operations blocks.

simulink/Math Operations/Sum

simulink/Math Operations/Add

simulink/Math Operations/Subtract

simulink/Math Operations/Sum of Elements

simulink/Math Operations/Bias

simulink/Math Operations/Weighted Sample Time
Math

Not supported when continuous sample times are used.
See notea

simulink/Math Operations/Gain

simulink/Math Operations/Slider Gain

simulink/Math Operations/Product

simulink/Math Operations/Divide

simulink/Math Operations/Product of Elements

simulink/Math Operations/Dot Product

simulink/Math Operations/Sign

simulink/Math Operations/Abs

simulink/Math Operations/Unary Minus

simulink/Math Operations/Math Function

simulink/Math Operations/Rounding Function

simulink/Math Operations/Polynomial

simulink/Math Operations/MinMax

FMU export from Simulink

99

simulink/Math Operations/MinMax Running Resettable

simulink/Math Operations/Trigonometric Function

simulink/Math Operations/Sine Wave Function

simulink/Math Operations/Algebraic Constraint Not supported. Algebraic loops are not supported in gen-
erated code.

simulink/Math Operations/Sqrt

simulink/Math Operations/Signed Sqrt

simulink/Math Operations/Reciprocal Sqrt

simulink/Math Operations/Assignment

simulink/Math Operations/Find Nonzero Elements

simulink/Math Operations/Matrix Concatenate

simulink/Math Operations/Vector Concatenate

simulink/Math Operations/Permute Dimensions

simulink/Math Operations/Reshape

simulink/Math Operations/Squeeze

simulink/Math Operations/Complex to Magnitude-An-
gle

simulink/Math Operations/Magnitude-Angle to Com-
plex

simulink/Math Operations/Complex to Real-Imag

simulink/Math Operations/Real-Imag to Complex
aNot supported by the S-function CodeFormat which the the FMU target is derived from.

Table 5.32 Model Verification blocks.

simulink/Model Verification/Check Static Lower
Bound

See note a.

simulink/Model Verification/Check Static Upper Bound See note a.

simulink/Model Verification/Check Static Range See note a.

simulink/Model Verification/Check Static Gap See note a.

simulink/Model Verification/Check Dynamic Lower
Bound

See note a.

simulink/Model Verification/Check Dynamic Upper
Bound

See note a.

FMU export from Simulink

100

simulink/Model Verification/Check Dynamic Range See note a.

simulink/Model Verification/Check Dynamic Gap See note a.

simulink/Model Verification/Assertion See note a.

simulink/Model Verification/Check Discrete Gradient See note a. Requires fixed-step solver, see note b.

simulink/Model Verification/Check Input Resolution See note a.
aThe block option Stop simulation when assertion fails does not affect the FMU simulation. Instead use the Enable assertion option to decide
if the FMU contains the assertion from the block.
bLimited by the S-function CodeFormat which the the FMU target is derived from.

Table 5.33 Model-Wide Utilities blocks.

simulink/Model-Wide Utilities/Trigger-Based Lin-
earization

Not supported, see note a.

simulink/Model-Wide Utilities/Timed-Based Lineariza-
tion

Not supported, see note a.

simulink/Model-Wide Utilities/Model Info

simulink/Model-Wide Utilities/DocBlock

simulink/Model-Wide Utilities/Block Support Table
aTLC-file for the block is missing. Code for the block cannot be generated.

Table 5.34 Ports & Subsystems blocks.

simulink/Ports & Subsystems/In1

simulink/Ports & Subsystems/Out1

simulink/Ports & Subsystems/Trigger

simulink/Ports & Subsystems/Enable

simulink/Ports & Subsystems/Function-Call Generator

simulink/Ports & Subsystems/Function-Call Split

simulink/Ports & Subsystems/Subsystem

simulink/Ports & Subsystems/Atomic Subsystem

simulink/Ports & Subsystems/CodeReuseSubsystem

simulink/Ports & Subsystems/Model Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/Model Variants Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/Function-Call Subsystem

simulink/Ports & Subsystems/Configurable Subsystem

FMU export from Simulink

101

simulink/Ports & Subsystems/Variant Subsystem Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/For Each Subsystem Not supported for Model Exchange, see note a.

simulink/Ports & Subsystems/For Iterator Subsystem

simulink/Ports & Subsystems/While Iterator Subsystem

simulink/Ports & Subsystems/Triggered Subsystem

simulink/Ports & Subsystems/Enabled Subsystem

simulink/Ports & Subsystems/Enabled and Triggered
Subsystem

simulink/Ports & Subsystems/If

simulink/Ports & Subsystems/If Action Subsystem

simulink/Ports & Subsystems/Switch Case

simulink/Ports & Subsystems/Switch Case Action Sub-
system

aBlock is not supported for generation of a Simulink Coder/Real-Time Workshop target.

Table 5.35 Signal Attributes blocks.

simulink/Signal Attributes/Data Type Conversion

simulink/Signal Attributes/Data Type Duplicate

simulink/Signal Attributes/Data Type Propagation

simulink/Signal Attributes/Data Type Scaling Strip

simulink/Signal Attributes/Data Type Conversion In-
herited

simulink/Signal Attributes/IC

simulink/Signal Attributes/Signal Conversion

simulink/Signal Attributes/Rate Transition

simulink/Signal Attributes/Signal Specification

simulink/Signal Attributes/Bus to Vector

simulink/Signal Attributes/Probe

simulink/Signal Attributes/Weighted Sample Time

simulink/Signal Attributes/Width

Table 5.36 Signal Routing blocks.

simulink/Signal Routing/Bus Creator

FMU export from Simulink

102

simulink/Signal Routing/Bus Selector

simulink/Signal Routing/Bus Assignment

simulink/Signal Routing/Vector Concatenate

simulink/Signal Routing/Mux

simulink/Signal Routing/Demux

simulink/Signal Routing/Selector

simulink/Signal Routing/Index Vector

simulink/Signal Routing/Merge

simulink/Signal Routing/Environment Controller

simulink/Signal Routing/Manual Switch

simulink/Signal Routing/Multiport Switch

simulink/Signal Routing/Switch

simulink/Signal Routing/From

simulink/Signal Routing/Goto Tag Visibility

simulink/Signal Routing/Goto

simulink/Signal Routing/Data Store Read

simulink/Signal Routing/Data Store Memory

simulink/Signal Routing/Data Store Write

simulink/Signal Routing/State Reader

simulink/Signal Routing/State Writer

Table 5.37 Sinks blocks.

simulink/Sinks/Out1

simulink/Sinks/Terminator

simulink/Sinks/To File Supports only "Save format" set to Array. TimeSeries are
not supported by Simulink Coder/Real-Time Workshop
generated code.

simulink/Sinks/To Workspace

simulink/Sinks/Scope

simulink/Sinks/Floating Scope

simulink/Sinks/XY Graph

simulink/Sinks/Display

FMU export from Simulink

103

simulink/Sinks/Stop Simulation

Table 5.38 Sources blocks.

simulink/Sources/In1 See notea.

simulink/Sources/Ground See note a.

simulink/Sources/From File See note a.

simulink/Sources/From Workspace See note a.

simulink/Sources/Constant See note a.

simulink/Sources/Enumerated Constant Not supported. Enumerator is not supported by the tar-
get.

simulink/Sources/Signal Builder See note a.

simulink/Sources/Ramp See note a.

simulink/Sources/Step See note a.

simulink/Sources/Sine Wave See note a.

simulink/Sources/Signal Generator See note a.

simulink/Sources/Chirp Signal See note a.

simulink/Sources/Random Number See note a.

simulink/Sources/Uniform Random Number See note a.

simulink/Sources/Band-Limited White Noise See note a.

simulink/Sources/Pulse Generator Uses a variable sample time, see note b.

simulink/Sources/Repeating Sequence See note a.

simulink/Sources/Repeating Sequence Stair See note a.

simulink/Sources/Repeating Sequence Interpolated See note a.

simulink/Sources/Clock See note a.

simulink/Sources/Digital Clock See note a.

simulink/Sources/Counter Free-Running Due to the nature of the block, the output depends on
how many times the FMI functions are called which
varies between different FMI import tools and solver set-
tings.

simulink/Sources/Counter Limited See note a.
aA source block should specify it's sampling time explicitly and not inherit it. The source signal may otherwise depend on the FMI import
tool and solver settings.
bNot supported by the S-function CodeFormat which the the FMU target is derived from.

FMU export from Simulink

104

Table 5.39 User-Defined Functions blocks.

simulink/User-Defined Functions/Fcn

simulink/User-Defined Functions/MATLAB Fcn (re-
named in 2011a, see Interpreted MATLAB Function)

Not supported. Not yet supported by Real-Time Work-
shop/Simulink Coder.

simulink/User-Defined Functions/Interpreted MAT-
LAB Function (new since 2011a)

Not supported. Not yet supported by Real-Time Work-
shop.

simulink/User-Defined Functions/Embedded MAT-
LAB Function (renamed in 2011a, see MATLAB Func-
tion)

simulink/User-Defined Functions/MATLAB Function
(new since 2011a)

simulink/User-Defined Functions/S-Function

simulink/User-Defined Functions/Level-2 MATLAB S-
Function

simulink/User-Defined Functions/S-Function Builder Supported if TLC file is generated.

simulink/User-Defined Functions/Matlab System

simulink/User-Defined Functions/Argument Inport Not supported. Not supported by the S-Function Code-
Format which the Model Exchange targets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Argument Outport Not supported. Not supported by the S-Function Code-
Format which the Model Exchange targets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Function Caller Not supported. Not supported by the S-Function Code-
Format which the Model Exchange targets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Simulink Function Not supported. Not supported by the S-Function Code-
Format which the Model Exchange targets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Event listener Not supported for the Model Exchange targets (not sup-
ported by the S-Function CodeFormat).

simulink/User-Defined Functions/Initialize Function Not supported for the Model Exchange targets (not sup-
ported by the S-Function CodeFormat).

simulink/User-Defined Functions/Terminate Function Not supported. Works in theory for the Co-Simulation
targets but need to be used with ert.tlc target to be useful.

simulink/User-Defined Functions/Reset Function Not supported.

FMU export from Simulink

105

Table 5.40 Additional Math & Discrete/Additional Discrete blocks.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form II

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form II Time Varying

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Fixed-Point State-Space

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay External IC

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Resettable External IC

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled External IC

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled Resettable External IC

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Resettable External RV

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled Resettable Ex-
ternal RV

Table 5.41 Additional Math & Discrete/Additional Math blocks.

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Increment Real World

FMU export from Simulink

106

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Real World

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Increment Stored Integer

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Stored Integer

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement To Zero

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Time To Zero

Table 5.42 Control System Toolbox blocks.

cstblocks/LTI System

5.11. Examples

5.11.1. Using a Simulink model to control a Vehicle model

This example demonstrates how a Simulink controller model for a controlled AWD application can be used in a
vehicle model to control the AWD actuator´s torque capacity. This is done in two steps, first by using the FMU
target to export the Simulink model and then import it the resulting FMU in an FMI compliant tool that simulates
the vehicle model, in this case Dymola 2013 FD01 with Vehicle Dynamics Library. Note that in order to simulate
the vehicle model in Dymola, a valid license for VDL is required.

The list of files used in this example are found in Table 5.43.

Table 5.43 Example files.

<installationfolder>/examples/me1/win32/
AWDControllerFMITC.mdl

Simulink controller model for a Hang-On to rear AWD.

<installationfolder>/examples/me1/win32/
AWDControllerFMITC.fmu

FMU file generated from the Simulink controller. The
example demonstrates how this file is generated.

<installationfolder>/examples/me1/win32/
ControlledAWD.mo

A Modelica vehicle model that is simulated in Dymo-
la(2013 FD01) using the Simulink controller.

5.11.1.1. Export Simulink model as FMU

1. Copy example files

Copy the example files to a folder with write access, i.e. C:\Users\<username>\Documents\awdexample\.
The Simulink model may not open properly otherwise.

FMU export from Simulink

107

2. Configure mex compiler

Configure the mex compiler in order to help Simulik Coder/Real-Time Workshop selecting an appropriate
compiler, see Section 5.4 for more information.

3. Open Simulink control model

Open AWDControllerFMITC.mdl in Simulink.

Figure 5.17 Simulink AWD controller model.

4. Go to the Real-Time Workshop/Coder Generation

Open the Configuration Parameters dialog and go to the Real-Time Workshop/Coder Generation (name
depends on MATLAB version).

5. Select target

Select System target file by clicking on the Browse... button. Select fmu_me1.tlc in the dialog that opens
and then click OK.

6. Build target

FMU export from Simulink

108

Click Apply in lower right corner of the Configuration Parameters dialog and then press the Build
button in the Real-Time Workshop/Code Generation tab. When the build process has finished the
AWDControllerFMITC.fmu will be located in the current directory.

5.11.1.2. Import FMU in vehicle model and simulate it in Dymola

1. Open vehicle model

Open ControlledAWD.mo in Dymola 2013 FD01 and select the AcceleratingWhileCornering component, see
Figure 5.18.

Figure 5.18 Vehicle model ControlledAWD.mo open in Dymola.

2. Remove placeholder for the FMU controller component

Remove the FMU controller component,
ControlledAWD.Components.Controllers.AWDControllerFMITC_fmu. This is just a placeholder for the
FMU that was generated from the Simulink.

FMU export from Simulink

109

Figure 5.19 Remove the vehicle model's placeholder for the FMU controller.

3. Import the AWDControllerFMITC FMU

In the menu bar, click File -> Import -> FMU - All variables... and select AWDControllerFMITC.fmu in
the file browser that opens. A new component AWDControllerFMITC_fmu is now added in the Package
Browser.

4. Rename the imported FMU

Right click on the new AWDControllerFMITC_fmu component and select Rename. In the Rename Mod-
elica Class dialog that opens, select ControlledAWD.Components.Controllers in the Insert in package: drop
down list, see Figure 5.20.

FMU export from Simulink

110

Figure 5.20 Rename AWDControllerFMITC_fmu component.

5. Build road

Select the AcceleratingWhileCornering component in the file browser and then in the menu bar, click Com-
mands -> Build road. Dymola will switch to the Simulation tab. Click Stop in the dialog that opens and
says Show preview?.

6. Select AcceleratingWhileCornering before simulating

Go back to the Modeling tab and select the AcceleratingWhileCornering to enable the pre configuration sim-
ulation settings such as simulation time and tolerances.

7. Simulate the model

Go back to the Simulation tab and click on the Simulation button.

8. View results and animation

Use the results variable browser to view the results or run the animation.

FMU export from Simulink

111

Figure 5.21 Vehicle model simulated using the Simulink controller.

112

Chapter 6. Design of Experiments
6.1. Introduction

Design of experiments (DoE) is commonly used in the engineering design process t o

• Optimize product design

• Calibrate system

• Verify capability and performance over the entire operating envelope of the process

DoE was originally developed for physical experiments, but is now commonly applied to virtual experiments on
detailed simulation models to identify the main relationships between system parameters, operating conditions,
and performance.

The DoE tools in the FMI Toolbox for MATLAB support static and dynamic analysis of FMU models in multiple
dimensions for Model Exchange 1.0 FMU models. Note that Co-Simulation FMUs are not supported.

The features for dynamic analysis (linearize FMU at each test point, show bode diagram and step responses) require
the MATLAB control system toolbox

6.1.1. Concepts

experiment
Simulation and analysis of FMU at a specified operating/design space point.

factor
FMU variable that is part of the DoE design, varies between the experiments.

test matrix
Matrix of operating points where the experiments are run. Each row corresponds to an experiment. Each
column corresponds to a DoE factor.

response
A variable that is influenced by the DoE factors. The response can be an FMU output or state, or some other
variable that is computed from the result of the experiments

Design of Experiments

113

6.1.2. Workflow

Figure 6.1 FMU DoE analysis workflow

1. Create an FMU model using an FMI compliant tool. Variables to be used as inputs in dynamic analysis must
be set as FMU inputs in the FMU. Variables to be stored should be set as FMU outputs.

2. Specify DoE factors in an Excel sheet or in a MATLAB script.

3. Use the MATLAB tools presented in this chapter to create a test matrix and analyze the model at each point
in the matrix.

4. Analyze and visualize result.

An important step of the DoE analysis is defining the test matrix. The toolbox supports three types of designs:

• Space-filling quasi-Monte Carlo

• Monte Carlo

• Full factorial (multi-dimensional grid)

Additionally, the tools support a user-supplied test matrix.

6.2. Getting started
In this Getting started tutorial, an analysis of a simulation model will be demonstrated using the DoE tools. The
FMU model analyzed is generated from Modelica Standard Library and exported with Dymola as an FMU ME 1.0.

Design of Experiments

114

Figure 6.2 MassForce.mo example model in Dymola

The model consists of a simple mechanical system: a force is applied to a body that is connected to a fixed wall
through a spring-damper system. The system has one input: the force acting on the body, and two outputs: the
position of the body and the heat dissipated in the damper.

Three factors are considered in the DoE analysis:

• force

• spring constant

• mass of body

The DoE factors are defined in an Excel sheet (a template is provided with the toolbox, DoEParameters.xltx):

Figure 6.3 DoE parameter definition in Excel

Design of Experiments

115

The information on the model and experiment setup is used to create a MATLAB FMUDoESetup object:

>> doe_setup = FMUDoESetup('MassForce.fmu','doe_parameters.xlsx')
doe_setup =

FMUDoESetup object

 properties:
 fmu_file_name: MassForce.fmu
 exp_setup: cell array with 4 variables specified
 options: struct with 6 fields

 methods: qmc, mc, fullfact, custom

The DoE experiments are run by calling a method of the FMUDoESetup object. To run a Monte-Carlo analysis that
sample each of the DoE factors from the distributions specified in the Excel file, the mc method is called:

>> nbr_of_experiments = 100;
>> doe_result = doe_setup.mc(nbr_of_experiments);

The FMUDoESetup method mc generates the test matrix and runs the model at each experiment point to find steady
state and linearization. An FMUDoEResult object is returned:

>> doe_result =

FMUDoEResult object

 properties:
 experiment_status: 100 out of 100 experiments successful
 generation_date: 20-Jun-2013 09:53:15
 model_data: struct with 4 fields
 doe: struct with 6 fields
 constants: struct with 2 fields
 steady_state: struct with 3 fields
 initial: ---
 linsys: struct with 5 fields
 options: struct with 6 fields
 comp_time: 0.54701 s per exp on average

 methods: main_effects, bode, step

The steady-state values of model inputs, outputs, and states are stored in doe_result.steady_state

>> doe_result.steady_state
ans =
 u: [100x1 double]
 y: [100x2 double]
 x: [100x2 double]

The method main_effects plots a variable against all DoE factors. The mass position (first FMU output) is plotted
as

Design of Experiments

116

>> position = doe_result.steady_state.y(:,1);
>> doe_result.main_effects(position);

equivalently, the main_effects method may be called with a string that corresponds to the name of an FMU input,
output, or DoE factor

>> doe_result.main_effects('position');

Figure 6.4 Plot of steady-state mass position vs. DoE factors

6.3. Function reference
The DoE tools operate on MATLAB objects of three classes:

FMUModelME1
FMU model object, as described in Chapter 4.

Methods:

• trim

• linearize

Design of Experiments

117

FMUDoESetup
Stores info on the DoE factors and their distributions, the FMU model, and simulation options.

Methods:

• qmc

• mc

• fullfact

• custom

FMUDoEResult
Stores result from a set of experiments, including input, output, state, and linearization at all test points.

Methods:

• main_effects

• bode (requires Control System Toolbox)

• step (requires Control System Toolbox)

6.3.1. FMUModelME1

The FMUModelME1 class has several methods and properties, as described in Chapter 4. Methods that are relevant
for the DoE features are described here.

6.3.1.1. trim

Find steady-state solution of FMU model

[X_SS,U_SS,Y_SS] = fmu_model.trim()

Find steady state values of state X_SS, input U_SS, and output Y_SS for FMU model fmu_model. The model should
be loaded and instantiated before calling trim.

[X_SS,U_SS,Y_SS] = fmu_model.trim(U)

Find steady state for input U.

[X_SS,U_SS,Y_SS] = fmu_model.trim(U,X_GUESS)

Design of Experiments

118

Use X_GUESS as initial guess for X_SS.

[X_SS,U_SS,Y_SS] = fmu_model.trim(U,X_GUESS,Y,U_GUESS)

Find steady state for a specified value of the output Y. The input that matches the output Y will be found iteratively. If
an output Y is specified, the corresponding free input should be set to NaN. U_GUESS is used as initial guess for U_SS.

Example:

For a two-input-two-output system, find the steady-state solution where u(1) = 2 and y(2) = 5. The second input
u(2) is free to vary to achieve y(2) = 5. The arguments should be chosen as U = [2 NaN]'; Y = [NaN 5]';

[X_SS,U_SS,Y_SS] = fmu_model.trim(U,X_GUESS,Y,U_GUESS,U_MIN,U_MAX)

Constrains the solution U_SS to lie within U_MIN and U_MAX.

[X_SS,U_SS,Y_SS] = fmu_model.trim(U,X_GUESS,Y,U_GUESS,U_MIN,U_MAX,OPTIONS)

Uses a struct OPTIONS for simulation options. Use the trimset function to get an OPTIONS struct with the default
values that can be modified and sent to trim:

>> OPTIONS = trimset();
>> OPTIONS.MaxIter = 100; % Default is 50, see 'help trimset'
>> [X_SS,U_SS,Y_SS] = fmu_model.trim(U,X_GUESS,Y,U_GUESS,U_MIN,U_MAX,OPTIONS);

[X_SS,U_SS,Y_SS,EXITFLAG] = fmu_model.trim(U,X_GUESS,Y,U_GUESS,U_MIN,U_MAX)

EXITFLAG indicates the success of the iterative algorithm to find input for a given output.

• EXITFLAG=0 --- Success

• EXITFLAG=1 --- Could not find inputs that match the specified outputs due to input saturation or local minimum.
The solution at the last iteration is returned.

• EXITFLAG=2 --- Maximum number of iterations reached. The solution at the last iteration is returned.

6.3.1.2. linearize

Linearization of FMU model using finite differences

[A,B,C,D,YLIN] = fmu_model.linearize()

Design of Experiments

119

[A,B,C,D,YLIN] = fmu_model.linearize(XLIN,ULIN)

Computes linearization of the FMU model object fmu_model. The model should be loaded and instantiated before
calling linearize. The model is linearized with the state XLIN and the input ULIN or with the current state and input
of the FMU if XLIN and ULIN are not given. Note that linearization is normally done at steady-state. If XLIN and
ULIN do not correspond to a stationary state of the system, unexpected results may be obtained. Returns A,B,C,D:
the system matrices for the linearized system from all FMU inputs to all FMU outputs, and YLIN: the system output
at the linearization point.

6.3.2. FMUDoESetup

The FMUDoESetup class is used to store information on the virtual experiment setup. It stores the name of the
FMU file, info on parameter ranges and distributions, and general simulation options.

6.3.2.1. Constructor

Constructor

DOE_SETUP = FMUDoESetup(FMU_FILE_NAME,EXP_SETUP_FILE)

Define the DoE experiment setup. FMU_FILE_NAME is the name of the FMU file. EXP_SETUP_FILE is the name of
an Excel spreadsheet that contains the distribution specification on the DoE factors. A template for the Excel file
is provided with the FMI Toolbox, DoESetup.xlsx.

The first non-empty row of the Excel sheet should contain column titles name, type, dist, etc. The FMU variables
are listed below the column title row. Empty rows and columns are discarded.

Required columns:

name Name of FMU variable

type One of FMUInput, FMUOutput, FMUParameter

dist One of the supported distributions: constant, uniform,
normal, triangle, free

Depending on the choice of dist, additional columns are required:

dist required columns optional columns

constant value

uniform min, max

normal mean, stdev

triangle min, max peak

free nominal min, max

Design of Experiments

120

The option dist=free is only available for FMU inputs, and is used when one or more FMU outputs are specified.
The input will be chosen iteratively to match the specified output. The value is constrained to lie in the range
specified by the min and max columns, and the value in column nominal is used as initial guess.

Additional columns that specify data used for certain DoE designs can also be added:

column description

levels Used for gridding DoE designs to specify the number of
grid levels for each variable

Note that each of the DoE methods (qmc, fullfact etc.) use different algorithms to design a test matrix from the
distribution information. All column data are not used for all types of DoE designs. See the documentation on
these methods below.

Figure 6.5 Example of experiment setup Excel sheet.

DOE_SETUP = FMUDoESetup(FMU_FILE_NAME,EXP_SETUP_FILE,EXP_SETUP_SHEET)

EXP_SETUP_SHEET is either the name or the index of an Excel sheet in the file EXP_SETUP_FILE from which the
parameter specification is taken.

DOE_SETUP = FMUDoESetup(FMU_FILE_NAME,EXP_SETUP_ARRAY)

Alternatively, the experiment setup can be specified as a cell array in MATLAB. The data in the example Excel
file above can equivalently be entered as

exp_setup = cell(5,1);

Design of Experiments

121

exp_setup{1}.name = 'mass';
exp_setup{1}.type = 'FMUParameter';
exp_setup{1}.dist = 'normal';
exp_setup{1}.mean = 30;
exp_setup{1}.stdev = 0.5;

exp_setup{2}.name = 'temperature';
exp_setup{2}.type = 'FMUInput';
exp_setup{2}.dist = 'uniform';
exp_setup{2}.min = 275;
exp_setup{2}.max = 285;

exp_setup{3}.name = 'constant.k';
exp_setup{3}.type = 'FMUInput';
exp_setup{3}.dist = 'triangle';
exp_setup{3}.min = 30;
exp_setup{3}.max = 50;
exp_setup{3}.peak = 45;

exp_setup{4}.name = 'position';
exp_setup{4}.type = 'FMUOutput';
exp_setup{4}.dist = 'constant';
exp_setup{4}.value = 0.5;

exp_setup{5}.name = 'force';
exp_setup{5}.type = 'FMUInput';
exp_setup{5}.dist = 'free';
exp_setup{5}.min = 20;
exp_setup{5}.max = 100;
exp_setup{5}.peak = 35;

doe_setup = FMUDoESetup('model.fmu',exp_setup);

FMUDoESetup(FMU_FILE_NAME,EXP_SETUP_FILE,EXP_SETUP_SHEET,OPTIONS)

Sets the FMUDoESetup property options to the OPTIONS struct. The default struct can be accessed through the
function fmu_doe_options.

OPTIONS = fmu_doe_options()

The fields in the struct OPTIONS may then be modified by the user before using it in the FMUDoESetup constructor.

field allowed values (default first) description

steady_state perform DoE analysis at system
steady-state

mode

initial perform DoE analysis after initializa-
tion

Design of Experiments

122

field allowed values (default first) description

Tmax positive scalar (default 1e6) maximum simulation horizon before
reaching steady-state

on compute linearization at all test points
(only available if MATLAB Control
System Toolbox is installed)

linearize

off do not compute linearization (auto-
matically selected if the MATLAB
Control System Toolbox is not avail-
able)

on return minimal realization of lin-
earized system between selected in-
puts and outputs

minreal

off return full linearized system

all linearization computed from all FMU
inputs

input_index

index vector linearization only computed from in-
put indices specified in vector

all linearization computed to all FMU
outputs

output_index

index vector linearization only computed to output
indices specified in vector

ode15ssolver

Name of MATLAB ode solver

solver_settings solver settings struct see MATLAB command odeset

6.3.2.2. DoE methods

Four DoE designs are supported

qmc Space-filling quasi-Monte-Carlo design in a hypercube

mc Monte-Carlo sampling

fullfact Full-factorial multi-dimensional grid

custom User-defined test matrix

All DoE methods perform the same analysis steps:

Design of Experiments

123

• Generate a test matrix according to the experiment setup specification

• Simulate the FMU at all points in the test matrix to extract the state input and output, either at steady-state
(default) or after initialization depending on the mode setting in the options struct

• Linearize the system at each point in the test matrix

• Return an FMUDoEResult object (see next section) with the analysis result

The difference between the functions is how the test matrix is computed.

To illustrate the difference, consider a DoE run with two factors, x1and x2. Both factors are specified to have
distribution normal, mean = 0, and stdev = 1. Examples of test matrices that can be constructed by the four functions
are shown below:

Figure 6.6 Example of 2D test matrices

The choice of design should be based on the type of questions to be answered by the analysis. The space-filling
QMC design distributes the points in the test matrix evenly in a hypercube. This is useful for investigating the
achievable capacity of the system over a design space, e.g., for process optimization. It is also applicable to find
the worst-case scenario over a range of process operating conditions.

For statistical analysis, e.g., determine the distribution of some performance value given statistical distributions on
component parameters, the Monte Carlo design should be used.

Full factorial design can be used as an alternative to the QMC design if the number of DoE factors are small or if
a grid design is specifically requested. In general, the QMC design is more efficient for investigating the system
in a hypercube.

qmc - Quasi-Monte Carlo analysis

Space-filling quasi-Monte-Carlo DoE design.

DOE_RESULT = doe_setup.qmc(NBR_OF_EXPERIMENTS)

The test matrix is generated using a Sobol sequence, which is a quasi-random sequence that aims to distribute
the test points evenly in a hypercube. For DoE factors with uniform or triangular distribution, the edges of the

Design of Experiments

124

hypercube are taken from the min and max values. For DoE variables with a normal distribution, the hypercube
edges are taken at mean ± 3*stdev. The number of experiments are given by NBR_OF_EXPERIMENTS. Note that qmc
does not sample according to the specified distribution. Rather, it is a tool to explore the model within a specified
parameter space.

mc - Monte Carlo analysis

Monte-Carlo DoE design.

DOE_RESULT = doe_setup.mc(NBR_OF_EXPERIMENTS)

The test matrix is generated by sampling independently from the distributions that are specified for each DoE
factor. The number of experiments are given by NBR_OF_EXPERIMENTS.

fullfact - Full factorial analysis

Full factorial DoE design.

DOE_RESULT = doe_setup.fullfact()

The test matrix is generated as a multi-dimensional grid. For DoE factors with uniform or triangular distribution,
the edges of the grid are taken from the min and max values. For DoE variables with a normal distribution, the grid
edges are taken at mean ± 3*stdev. The number of levels for each factor is taken from the levels field. For factors
where no value is given for levels, three levels are used as default.

DOE_RESULT = doe_setup.fullfact(DEFAULT_LEVELS)

Changes the default number of levels to DEFAULT_LEVELS. The value in DEFAULT_LEVELS is overridden for the
factors where the field levels is specified in the experiment setup.

custom - User-defined test matrix

DoE analysis with user-provided test matrix.

DOE_RESULT = doe_setup.custom(TEST_MATRIX,VARIABLE_NAMES,VARIABLE_TYPES)

Runs the DoE experiments at operating points in a user-provided test matrix. Each row in TEST_MATRIX corresponds
to an experiment, and each column to a variable. The names of the variables corresponding to the test matrix
columns are supplied in the cell array VARIABLE_NAMES, and their types (FMUInput, FMUParameter, FMUOutput)
are supplied in the cell array VARIABLE_TYPES. Variable specifications that are provided in the doe_setup object
are applied if their dist value is either constant or free, otherwise they are ignored. .

Example

Design of Experiments

125

test_matrix = [1 0 5
 1 1 5
 0 1 5
 0 0 5];
var_names = {'u1','u2','some_parameter'};
var_types = {'FMUInput','FMUInput','FMUParameter'};
result = doe_setup.custom(test_matrix, var_names,var_types);

6.3.3. FMUDoEResult

The DoE methods return an FMUDoEResult object. The information from the experiment can be accessed as prop-
erties on the object. Three methods are provided to visualize the result:

main_effects
Plots a response variable against each of the DoE factors

bode
Shows the Bode diagram of the ensemble of linear systems at all test points

step
Shows the step response of the ensemble of linear systems at all test points

6.3.3.1. properties

field subfields description

generation_date time and date when the FMUDoEResult object was generated

name name of FMU

input_names names of all FMU inputs

output_names names of all FMU outputs

model_data

generation_date time and date when the FMU was generated

nbr_of_experiments number of experiments in DoE design

ndim number of DoE factors

factor_names names of DoE factors

factor_types types of DoE factors (FMUInput, FMUOutput, FMUParame-
ter)

test_matrix test matrix

doe

generating_function the name of the FMUDoESetup method that generated the result

constants names names of all variables that were constant in all the experi-
ments, but changed from the default FMU values

Design of Experiments

126

field subfields description

values values for these constants

vector of size nbr_of_experiments x 1 that denote the status
of the FMU analysis at each test point

0 | Successful

-1 | Could not find inputs to match specified outputs because
of input saturation or a local minimum. If input was saturated,
return values for steady-state solutions and linearized model
are taken slightly away from the saturation border. If a local
minimum was found, return values are taken at the last itera-
tion point.

-2 | The algorithm to find inputs to match specified outputs did
not converge. Return values correspond to last iteration point.

experiment_status

-99 | Error in simulating the FMU with the given settings, no
values are returned at this test point.

u steady-state input u

y steady-state output y

steady_state

x steady-state state x

sys cell array where each item corresponds to the system lineariza-
tion at one of the test points

u_index the indices of FMU inputs that are inputs to the linear systems
(the default is all inputs, see Section 6.3.2.1)

y_index the indices of FMU outputs that are outputs to the linear sys-
tems

u_names the names of the linear system inputs

linsys

y_names the names of the linear system outputs

options the options struct that were used when generating the result
struct

comp_time vector of size nbr_of_experiments x 1 with the computa-
tional time in seconds for each experiment

6.3.3.2. main_effects

Visualization of the main effects of the DoE factors on a response variable.

[FOI,TS] = doe_result.main_effects(RESPONSE)

Design of Experiments

127

RESPONSE is either a vector of length doe_result.doe.nbr_of_experiments, or the name of an FMU input or
output variable. The function generates a series of subplots where the RESPONSE variable is plotted against each of
the DoE factors. A second order polynomial is fitted to the data and also shown in the plots.

FOI is a vector of first-order indices: the ratio of variance explained by the second-order polynomial approximation
to the total variance in the response. TS (total score) is the ratio of variance described by a second-order polynomial
fit in all of the variables (without interaction terms), to the total variance in the response.

[FOI,TS] = doe_result.main_effects(RESPONSE,RESPONSE_LABEL)

Uses the string RESPONSE_LABEL for the y axis label.

[FOI,TS] = doe_result.main_effects(RESPONSE,RESPONSE_LABEL,CLASSES)

Color codes the dots according to the array CLASSES. CLASSES should be a vector of integers or an array of strings,
each unique element in CLASSES will be assigned to a different color.

[FOI,TS] = doe_result.main_effects(RESPONSE,RESPONSE_LABEL,CLASSES,FIG_NR)

Generates the plot in figure FIG_NR.

Caution:

If the factors are not independent (e.g., if a custom test matrix was used or the number of experiments is small
compared to the number of factors), false correlations between factors and response may appear. The first-order
indices FOI and total score TS values should be interpreted with care.

Example:

A vector as response variable

y1 = result.steady_state.y(:,1);
y2 = result.steady_state.y(:,2);
doe_result.main_effects(y2-y1);

An FMU output variable name as response variable

doe_result.main_effects('y2');

Using a CLASSES vector

indicator_array = cell(doe_result.doe.nbr_of_experiments,1);
u2 = doe_result.steady_state.u(:,2);
for k=1:1:doe_result.doe.nbr_of_experiments
 if u2 < 2

Design of Experiments

128

 indicator_array{k} = 'low';
 elseif u2 > 5
 indicator_array{k} = 'high';
 else
 indicator_array{k} = 'medium';
 end
end
y1 = doe_result.steady_state.y(:,1);
doe_result.main_effects(y1,'first output',indicator_array);

6.3.3.3. bode

Visualize Bode plot variability for the system linearizations computed at the test points.

PLOT_SUBSET = doe_result.bode()

Computes the magnitude and phase for each of the linear systems in doe_result.linsys.sys. To generate the
plot efficiently, only a subset of the systems are shown in the plot. By default, the systems with the highest and
lowest phase and magnitude at each frequency are determined. The union of these systems over all frequencies are
then plotted. This means that the systems that are excluded have a frequency response that lie within the range of
the ones that are shown. For MIMO systems, the selection of systems to show are done individually for each pair
of inputs and outputs. See the PLOTMODE argument below for alternative methods to select a subset of systems to
show. Returns the subset of systems that are shown in the plot in the cell array PLOT_SUBSET.

PLOT_SUBSET = doe_result.bode(INPUT_INDEX,OUTPUT_INDEX)

For MIMO systems, only shows the Bode plot for the systems between the inputs and outputs specified in
INPUT_INDEX and OUTPUT_INDEX.

PLOT_SUBSET = doe_result.bode(INPUT_INDEX,OUTPUT_INDEX,W_RANGE)

Selects the subset of systems and shows the Bode plot in the frequency range specified by W_RANGE =

{w_min,w_max}.

PLOT_SUBSET = doe_result.bode(INPUT_INDEX,OUTPUT_INDEX,W_RANGE,PLOTMODE)

PLOTMODE determines the subset of systems that are shown. The default, where all systems that span the envelope
of the magnitude and phase are shown, corresponds to PLOTMODE = 'envelope'. PLOTMODE = 'all' shows all
systems (max number of systems is 100). PLOTMODE = NBR where NBR is a positive integer selects NBR systems at
random. For this option the same selection is applied to all input-output pairs.

PLOT_SUBSET = doe_result.bode(INPUT_INDEX,OUTPUT_INDEX,W_RANGE,PLOTMODE,FIG_NR)

Generates the plot in figure FIG_NR.

Design of Experiments

129

6.3.3.4. step

Visualize step response variability for the system linearizations computed at the test points.

PLOT_SUBSET = doe_result.step()

Computes the step response for each of the linear systems in doe_result.linsys.sys. To generate the plot effi-
ciently, only a subset of the systems are shown in the plot. By default, the systems that span the envelope of the step
response trajectories are plotted. This means that the systems that are excluded have a step response that lie within
the range of the ones that are shown. For MIMO systems, the selection of systems to show are done individually
for each pair of inputs and outputs. See the PLOTMODE argument below for alternative methods to select a subset of
systems to show. Returns the subset of systems that are shown in the plot in the cell array PLOT_SUBSET.

PLOT_SUBSET = doe_result.step(INPUT_INDEX,OUTPUT_INDEX)

For MIMO systems, only shows the step responses between the inputs and outputs specified in INPUT_INDEX and
OUTPUT_INDEX.

PLOT_SUBSET = doe_result.step(INPUT_INDEX,OUTPUT_INDEX,T_MAX

Selects the subset of systems and shows the step response in the time range [0,T_MAX].

PLOT_SUBSET = doe_result.step(INPUT_INDEX,OUTPUT_INDEX,T_MAX,PLOTMODE)

PLOTMODE determines the subset of systems that are shown. The default, where all systems that span the envelope
of the step response trajectories are shown, corresponds to PLOTMODE = 'envelope'. PLOTMODE = 'all' shows
all systems (max number of systems is 100). PLOTMODE = NBR where NBR is a positive integer selects NBR systems
at random. For this option the same selection is applied to all input-output pairs.

PLOT_SUBSET = doe_result.step(INPUT_INDEX,OUTPUT_INDEX,T_MAX,PLOTMODE,FIG_NR)

Generates the plot in figure FIG_NR.

6.4. Examples

6.4.1. Mass-Spring system

The mass-spring model was introduced in Section 6.2.

6.4.1.1. Define the Experiment Setup

To load the experiment setup data from the second sheet in the Excel file doe_parameters.xlsx, the DoE setup
constructor is called with the optional sheet name argument:

Design of Experiments

130

doe_setup = FMUDoESetup('MassForce.fmu','doe_parameters.xlsx','Sheet2')

Figure 6.7 DoE parameter definition in Excel

The DoE design spans three dimensions: the force input force, the mass parameter mass.m, and the spring constant
parameter springDamper.c. A constant is also defined in the Excel sheet, the damping constant springDamper.d.
All FMU parameters that are not specified in the Excel sheet will be set to their default values in the FMU.

The doe_setup object stores information on the FMU file name and the parameter specification loaded from Excel

>> doe_setup
doe_setup =

FMUDoESetup object

 properties:
 fmu_file_name: MassForce.fmu
 exp_setup: cell array with 4 variables specified
 options: struct with 6 fields

 methods: qmc, mc, fullfact, custom

6.4.1.2. Run DoE experiments

The qmc DoE method is an efficient algorithm to spread test points approximately evenly in a hypercube.

To run the qmc method with 100 test points, call

>> nbr_of_experiments = 100;

Design of Experiments

131

>> doe_result = doe_setup.qmc(nbr_of_experiments);

The test matrix from a DoE run can be accessed in doe_result.doe.test_matrix. According to the specification
of the qmc method, the test points should be distributed evenly between the min and max values for the parameters
with dist=uniform, and between mean+-3*stdev for variables with dist=normal. The following code illustrates
the test design in 3D and projected in 2D

test_matrix = doe_result.doe.test_matrix;
factor_names = doe_result.doe.factor_names;
%----------------
% 3D-plot
%----------------
subplot(4,1,1); plot3(test_matrix(:,1),test_matrix(:,2),test_matrix(:,3),'o'); grid on;
xlabel(factor_names{1}); ylabel(factor_names{2}); zlabel(factor_names{3});
%----------------
% Projected to 2D
%----------------
subplot(4,1,2); plot(test_matrix(:,1),test_matrix(:,2),'o');
xlabel(factor_names{1}); ylabel(factor_names{2});
subplot(4,1,3); plot(test_matrix(:,2),test_matrix(:,3),'o');
xlabel(factor_names{2}); ylabel(factor_names{3});
subplot(4,1,4); plot(test_matrix(:,3),test_matrix(:,1),'o');
xlabel(factor_names{3}); ylabel(factor_names{1});

Figure 6.8 DoE test matrix plot

The test points are approximately uniformly distributed in the cube spanned by the three DoE factors.

6.4.1.3. Analyze results

Steady-state

The steady-state values of model inputs, outputs, and states are available in doe_result.steady_state

>> doe_result.steady_state
ans =
 u: [100x1 double]
 y: [100x2 double]

Design of Experiments

132

 x: [100x2 double]

The method main_effects plots a response against all DoE factors. The mass position (first FMU output) is
plotted as

>> position = doe_result.steady_state.y(:,1);
>> doe_result.main_effects(position);

equivalently, the main_effects method may be called with a string that corresponds to the name of an FMU input,
output, or DoE factor

>> doe_result.main_effects('position');

Figure 6.9 Plot of steady-state mass position vs. DoE factors

In the range examined in the DoE design, the main influencing factor for the steady-state mass position is the
applied force. The spring constant also influences the steady-state position but to a smaller extent, and the mass
has no influence at all.

The value on top of each subplot is the first-order-index; it tells the percentage of the variation in the plotted
response variable that is explained by a second-order polynomial in the corresponding DoE factor. Note that the
FOI indices may sum to more than 1 if the factors are not perfectly uncorrelated.

Design of Experiments

133

The dots in the scatter plots may be color coded by using an integer vector that represent different classes as input
to the main_effects method. Each unique integer in the vector is assigned to a different color.

>> force = doe_result.doe.test_matrix(:,1);
>> indicator_vector = zeros(size(force));
>> indicator_vector(force>90) = 1;
>> indicator_vector(force<60) = -1;
>> doe_result.main_effects('position','mass position',indicator_vector);

Figure 6.10 Plot of steady-state mass position vs. DoE factors with color coding.

The influence of force (high = red, medium = green, low = blue) is now visible in all DoE factor subplots.

Dynamic analysis

The linearization of the system at the points in the test matrix is available in doe_result.linsys

>> doe_result.linsys

Design of Experiments

134

ans =
 sys: {100x1 cell}
 u_index: 1
 y_index: [1 2]
 u_names: {'force'}
 y_names: {'position' 'heatflow'}

doe_result.linsys.sys is a cell array with a state-space model for each point in the test matrix. The method
bode plots the Bode diagrams for the set of linear systems.

>> doe_result.bode(1,1,[],'all');

plots the Bode diagram for all linear systems in the doe_result struct from the first FMU input (here force) to
the first FMU output (here mass position).

Figure 6.11 Bode diagram for the linearized systems at all test points from input force to mass position.

The corresponding step responses can be plotted using step

>> doe_result.step(1,1,[],'all');

Design of Experiments

135

Figure 6.12 Step response for the linearized systems at all test points from input force to mass position.

Steady-state values for each of the step responses are shown as dashed black lines.

If the number of experiments is large, the Bode plots and step responses may be slow to generate and visually
cluttered if all systems are shown. The bode and step methods have an option to plot the envelope of step responses
and Bode diagrams. For this case, the curves are computed for all systems but only the ones that have the maximum
or minimum value for some time/frequency are shown in the plot. For example,

>> doe_result.step(1,1,[],'envelope');

generates the plot

Design of Experiments

136

Figure 6.13 Envelope of step responses for the linearized systems.

All step responses that are not shown lie entirely within the ones that are shown in the plot.

With only a few lines of code, it is possible to correlate some feature of the step response or Bode diagram to DoE
factors. The following code extracts the peak frequency for each Bode plot and correlates it to the DoE factors
in a main effects plot

peak_frequency = zeros(doe_result.doe.nbr_of_experiments,1);
freq_vec = logspace(0,1,100); % search for the peak in
 % the frequency
 % range [10^0,10^1]
for k=1:1:doe_result.doe.nbr_of_experiments
 [mag,phase] = bode(doe_result.linsys.sys{k}(1,1),freq_vec); % compute mag and phase
 % at these frequencies
 [maxgain,indmaxfreq] = max(squeeze(mag)); % extract max gain and
 % corresponding freq_vec
 % index
 peak_frequency(k) = freq_vec(indmaxfreq); % store peak frequency
end
doe_result.main_effects(peak_frequency,'peak freq'); % generate plot

Design of Experiments

137

Figure 6.14 Maximum-gain frequency plotted vs. DoE factors.

138

Chapter 7. Tutorial examples
7.1. Stabilization of a Furuta pendulum system

In this tutorial, you will go through the following steps using a tool for generating an FMU from modelica code
and FMI Toolbox. If you do not have an FMU generating tool from modelica code, skip step 3. A pre-compiled
FMU is included for convenience.

• Compile a binary model from Modelica code.

• Import the model in Simulink.

• Simulate a Modelica model in Simulink with a simple control system.

For the tutorial, we will use a mechanical system called a Furuta pendulum, see [Jak2003]. The system is shown
in Figure 7.1.

Figure 7.1 The Furuta pendulum.

The angle of the pendulum, theta is defined to be zero when in upright position and positive when the pendulum is
moving clockwise. The angle of the arm, phi, is positive when the arm is moving in counter clockwise direction.
Further, the central vertical axis is connected to a DC motor which applies a torque proportional to the control
signal u. The Modelica code for the Furuta pendulum model is given by:

Tutorial examples

139

model Furuta
 import SI = Modelica.SIunits;
 parameter SI.MomentOfInertia Jp = (m_pa/3 + M)*lp^2;
 parameter SI.MomentOfInertia Ja = 0.00144;
 parameter SI.Length lp = 0.421;
 parameter SI.Length l = (m_pa/2 + M)/(m_pa + M)*lp;
 parameter SI.Mass M = 0.015;
 parameter SI.Length r = 0.245;
 parameter SI.Mass m_pa = 0.02;
 parameter SI.Acceleration g = 9.81;

 parameter SI.Angle theta_0 = 0.1;
 parameter SI.AngularVelocity dtheta_0 = 0;
 parameter SI.Angle phi_0 = 0;
 parameter SI.AngularVelocity dphi_0 = 0;

 output SI.Angle theta(start=theta_0);
 output SI.AngularVelocity dtheta(start=dtheta_0);
 output SI.Angle phi(start=phi_0);
 output SI.AngularVelocity dphi(start=dphi_0);

 input SI.Torque u;

protected
 parameter Real a = Ja + (m_pa + M)*r^2;
 parameter Real b = Jp;
 parameter Real c = (m_pa + M)*r*l;
 parameter Real d = (m_pa + M)*g*l;

equation
 der(theta) = dtheta;
 der(phi) = dphi;
 c*der(dphi)*cos(theta) - b*dphi^2*sin(theta)*cos(theta) +
 b*der(dtheta) - d*sin(theta) = 0;
 c*der(dtheta)*cos(theta) - c*dtheta^2*sin(theta) +
 2*b*dtheta*dphi*sin(theta)*cos(theta) +
 (a + b*sin(theta)^2)*der(dphi) = u;
end Furuta;

Note that the model is written on implicit form, i.e., the derivatives der(dphi) and der(dtheta) are given by a system
of two equations.

7.1.1. Tutorial

1. Create a new folder on your hard drive, e.g., C:\Furuta\

2. Copy the example files to the directory you just created. The example files are included in FMI Toolbox, in
the directory examples\me1\Furuta under the installation directory. FMI Toolbox is typically located at C:
\Program Files\Modelon\FMI Toolbox 1.3.1. The following files are needed:

Tutorial examples

140

• furuta.m

• Furuta.mo

• Furuta.png

• Furuta_open_loop.mdl

• Furuta_linearization.mdl

• Furuta_state_feedback.mdl

3. In order to use the Furuta model in Simulink, the model Furuta.mo, has to be compiled. Please generate an
FMU for Model Exchange version 1.0 with your FMU generating tool from modelica code. Make sure that
the FMU is located in C:\Furuta\ before you continue to the next step. Note that a pre-compiled FMU is
included in FMI Toolbox for convenience.

4. Start MATLAB, and make sure that the FMI Toolbox is properly installed by adding the installation directory
to MATLAB's paths, see the Installation section for details. Next, type the command:

 >> simulink

Open the file Furuta_open_loop.mdl

Figure 7.2 A Simulink diagram with the Furuta pendulum.

Tutorial examples

141

The Furuta pendulum model is represented by an FMU block in the Simulink diagram, and Simulink Scopes
have been connected to the outputs. Press the simulation button and then open the scopes theta and phi. You
should now see plots like the ones below.

Figure 7.3 Simulation result for the theta angle [rad].

Figure 7.4 Simulation result for the phi angle [rad].

Tutorial examples

142

Next, open the FMU dialog by double clicking the FMU block. In the Parameters & Start values tab, change
the value of the parameter theta_0 from 0.1 to 1.3. This change corresponds to altering the start value of the
pendulum angle from almost upright position to almost aligned to the horizontal plane.

Figure 7.5 Changing of parameter values of the Furuta FMU block.

Simulating the Simulink model again should give a result like the one shown below.

Tutorial examples

143

Figure 7.6 Simulation result for the theta angle [rad].

Figure 7.7 Simulation result for the phi angle [rad].

5. Next, we will linearize the pendulum in its upright position, in order to obtain a linear model to use for control
design. Open the model Furuta_linearization.mdl.

Tutorial examples

144

Figure 7.8 The Simulink model used for linearizion of the Furuta model.

The linearizion commands below is found in the furuta.m script. In order to linearize the model, we use the
MATLAB command linmod:

[A,B,C,D] = linmod('Furuta_linearization',[0 0 0 0], [0])

The A, B, C and D matrices represent a linear state space model for the pendulum in its upright position. In
order to simplify the computations, we transform the model so that the ordering of the outputs correspond to
the ordering of the Furuta FMU block:

% Transform state vector to correspond to output ordering
A = C*A*inv(C)
B = C*B
C = C*inv(C)

Finally, we design a linear quadratic state feedback controller using the lqr command from the Control Sys-
tems Toolbox. If Control Systems Toolbox is not installed on your system, comment the line with the lqr
command and uncomment the row below.

% Compute a state feedback control law
Q = diag([100 10 1 0.25])
R = 100
L = lqr(A,B,Q,R)
%L = [-2.4263 -0.5189 -0.1000 -0.1179]

Tutorial examples

145

In order to run the script, type the following commands into your MATLAB shell:

 >> cd C:\Furuta
 >> furuta

The state feedback control law has now been computed. Next, open the model Furuta_state_feedback.mdl.

Figure 7.9 The Furuta state feedback Simulink model.

The model contains, apart from the Furuta FMU block, a state feedback control system where the reference
value for the arm angle, phi, is a square wave. Set the simulation time to 20s and simulate the model. Opening
of the scopes theta and phi should give the following plots:

Tutorial examples

146

Figure 7.10 State feedback trajectory for the theta angle [rad].

Figure 7.11 State feedback trajectory for the phi angle [rad].

7.1.1.1. Simulate Furuta model with co-simulation block

The Furuta pendulum can also be simulated with a Co-Simulation model. To to this, redo the tutorial above but in
step 2, copy the files found from the directory examples\cs1\Furuta instead of examples\me1\Furuta. In step

Tutorial examples

147

3, generate a Co-Simulation 1.0 FMU instead of Model Exchange 1.0. Note that these Simulink models uses the
FMU CS 1.0 block instead of the FMU ME 1.0 block.

The simulation results from Furuta_state_feedback.mdl model is given here. The scopes theta and phi should
give the following plots:

Figure 7.12 State feedback trajectory for the theta angle [rad].

Tutorial examples

148

Figure 7.13 State feedback trajectory for the phi angle [rad].

7.2. Vehicle dynamics model simulated in Simulink
with a driver

In this tutorial, you will go through the following steps using a tool for generating an FMU from modelica code
and FMI Toolbox. If you do not have an FMU generating tool from modelica code, skip step 2. A pre-compiled
FMU is included for convenience.

• Compile a linear single-track vehicle model into an FMU

• Simulate the vehicle model in an open-loop experiment

• Use a simple driver model to drive the vehicle model around a predefined path

Tutorial examples

149

Figure 7.14 Simulating the FMU Car model in Simulink connected to a Driver block created in Simulink.

7.2.1. Tutorial

1. Setting up project

• To start, create a folder somewhere on your hard drive, e.g. C:\VehicleDynamics

• Copy the example files to the directory you just created. The example files are located in the directory
examples\me1\VehicleDynamics under the installation directory. The following files are needed:

• Car.mo

• CarOpenLoop.mdl

• CarClosedLoop.mdl

If you do not have an FMU generating tool from modelica code, then also copy Car.fmu and go to step 3.

2. In order to use the Car model in Simulink, the model Car.mo, has to be compiled. Please generate an FMU
for Model Exchange version 1.0 with your FMU generation tool for modelica code. Make sure that the FMU
is located in C:\VehicleDynamics\ before you continue to the next step. Note that a pre-compiled FMU is
included in FMI Toolbox for convenience. The Modelica code for the Car model is given by:

model Car "Linear single-track vehicle model"
parameter Modelica.SIunits.Length l_f=1 "Distance from front axle to c.o.g.";

Tutorial examples

150

parameter Modelica.SIunits.Length l_r=1 "Distance from rear axle to c.o.g.";
parameter Modelica.SIunits.Mass m=1000 "Mass";
parameter Modelica.SIunits.Inertia i_zz=2500
 "Moment of inertia around vertical axis";
parameter Real C_f=100000 "Front axle cornering stiffness";
parameter Real C_r=100000 "Rear axle cornering stiffness";
parameter Real k_sw=1 "Steering gain";

input Modelica.Blocks.Interfaces.RealInput steering_angle
 "Steering wheel angle input";
input Modelica.Blocks.Interfaces.RealInput longitudinal_velocity
 "Longitudinal velocity input";

Modelica.SIunits.Angle alpha_f "Front slip angle";
Modelica.SIunits.Angle alpha_r "Rear slip angle";
Modelica.SIunits.Force f_y_f "Front axle lateral force";
Modelica.SIunits.Force f_y_r "Rear axle lateral force";
Modelica.SIunits.AngularVelocity w_z "Yaw rate";
Modelica.SIunits.Position p_z "Yaw angle";
Modelica.SIunits.Velocity v_y "Lateral velocity";
Modelica.SIunits.Velocity v_x "Longitudinal velocity";
Modelica.SIunits.Acceleration a_y "Lateral acceleration";

Modelica.SIunits.Angle delta=k_sw*steering_angle "Steering angle at wheels";

output Modelica.SIunits.Position r_x "Global X position";
output Modelica.SIunits.Position r_y "Global Y position";

output Modelica.SIunits.Velocity V_x "Global X velocity";
output Modelica.SIunits.Velocity V_y "Global Y velocity";

equation
v_x = max(0.1,longitudinal_velocity) "Avoid division by zero for low speeds";

alpha_f = (-v_y-l_f*w_z)/v_x+delta "Front axle slip angle (assuming small angles)";
alpha_r = (-v_y+l_r*w_z)/v_x "Rear axle slip angle (assuming small angles)";

f_y_f = C_f*alpha_f "Front axle lateral force";
f_y_r = C_r*alpha_r "Rear axle lateral force";

a_y = der(v_y)+v_x*w_z "Lateral acceleration";

m*a_y = f_y_f+f_y_r "Lateral force balance";
i_zz*der(w_z) = l_f*f_y_f-l_r*f_y_r "Torque balance around vertical axis";

der(p_z) = w_z "Yaw angle output";

V_x=v_x*cos(p_z)-v_y*sin(p_z) "Global X velocity output";
V_y=v_x*sin(p_z)+v_y*cos(p_z) "Global Y velocity output";
der(r_x)=V_x "Global X position output";

Tutorial examples

151

der(r_y)=V_y "Global Y position output";
end Car;

3. Simulate the model in Simulink

• In Simulink, open the model CarOpenLoop.mdl from your project directory.

• A step steer maneuver is prepared with a constant velocity input and some outputs have been selected and
routed into a scope block. Simulate the model and you should see the following plots in the scope:

Tutorial examples

152

Figure 7.15 Simulation results for CarOpenLoop.mdl

Tutorial examples

153

4. Closed loop simulation in Simulink

• Now open CarClosedLoop.mdl instead. Here the vehicle model is connected to a driver model with a
simple path tracking controller. The path to follow is defined as a distance-curvature interpolation table:

Table 7.1 Distance-curvature interpolation table of the path for the driver to follow

Distance along path Curvature

0 0

50 0

50+50 1/200

50+2*pi*200 1/200

50+2*pi*200+50 -1/100

50+2*pi*200+2*pi*100 -1/100

• In the experiment, the path is defined as two full circles with two different curve radii. First a left turn with
r=200m then a right turn with r=100m. A 50m transition distance is used when changing curvature.

• Simulate the model.

• To plot the position of the vehicle the following commands can be used:

figure;
plot(posout.signals.values(:,1),posout.signals.values(:,2));
axis equal;

The following plot should appear:

Tutorial examples

154

Figure 7.16 Vehicle position

• In the parameter dialog of the FMU block, add outputs for lateral acceleration (a_y) and yaw rate (w_z) and
add scopes to view the output. After simulating, you should see the following plots:

Tutorial examples

155

Figure 7.17 Plot of lateral acceleration [m/s2]

Figure 7.18 Plot of vehicle yaw rate [rad/s]

156

Chapter 8. Limitations
This page lists the current limitations of the FMI Toolbox.

8.1. Simulink FMU block
• The input and output port does not support strings.

• For large models (above 30 thousand variables, depending on the computer), the tree views in the GUI may take
long time to draw. It is recommended to use the structured tree view and not the flat view.

• Co-Simulation FMUs with modelDescription attribute canRunAsynchronuously set to true are not supported.

• When Simulink Coder/Real-Time Workshop builds a model containing multiple FMU blocks, interference may
occur due multiple source code FMUs may include different files with the same name using the #include <...>
include directive.

• Simulating with Rapid Accelerator Mode is not supported when using FMU blocks.

8.2. MATLAB FMU Classes
• DOE analysis is not supported for Model Exchange 2.0 FMUs.

• No analytical Jacobain will be used when simulating Model Exchange 2.0 FMUs.

• The FMI functions fmi2GetFMUstate, fmi2SetFMUstate, fmi2FreeFMUstate, fmi2SerializedFMUstateSize,
fmi2SerilizeFMUstate and fmi2DeSerializeFMUstate are not implemented.

• It is not possible to access the dependency information of variables present in the ModelStructure tag in the
XML for 2.0 FMUs.

8.3. FMU Export

8.3.1. Common target

• Complex input and output ports are not supported. There is no corresponding data type in the FMI standard.
Complex parameters will not be exposed in the FMU.

• Fixed-point input and output ports are not supported. There is no corresponding data type in the FMI standard.
Fixed-point parameters will not be exposed in the FMU.

Limitations

157

• Discrete variables (variability attribute set to discrete) may change value at instants other than during initializa-
tion or at event instants.

• Start values NaN and Inf are not supported for exposed parameters.

In Table 8.1 unsupported blocks or blocks with restricted usage are listed. For a full list with blocks that have been
tested, see Section 5.10.

Table 8.1 Unsupported or restrictions on blocks

Block Comment

simulink/Continuous/Variable Time Delay Partial supported. Generates different results.

simulink/Continuous/Variable Transport Delay Partial supported. Generates different results.

simulink/Continuous/Derivative Partial supported. Derivative approximation is depen-
dent on the length of the integrator step which causes
the results to be different.

simulink/Discontinuities/Backlash Partial supported. Generates different results.

simulink/Math Operations/Weighted Sample Time
Math

Not supported when continuous sample times are used.
See notea

simulink/Math Operations/Algebraic Constraint Not supported. Algebraic loops are not supported in
generated code.

simulink/Model Verification/Check Discrete Gradient See note a. Requires fixed-step solver, see note b.

simulink/Model-Wide Utilities/Trigger-Based Lin-
earization

Not supported, see note c.

simulink/Model-Wide Utilities/Timed-Based Lin-
earization

Not supported, see note c.

simulink/Ports & Subsystems/Model Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/Model Variants Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/Variant Subsystem Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/For Each Subsystem Not supported for Model Exchange, see note d.

simulink/Sinks/To File Supports only "Save format" set to Array. TimeSeries
are not supported by Simulink Coder/Real-Time Work-
shop generated code.

simulink/Sources/Enumerated Constant Not supported. Enumerator is not supported by the tar-
get.

Limitations

158

Block Comment

simulink/Sources/Pulse Generator Uses a variable sample time, see note e.

simulink/Sources/Counter Free-Running Due to the nature of the block, the output depends on
how many times the FMI functions are called which
varies between different FMI import tools and solver
settings.

simulink/User-Defined Functions/MATLAB Fcn (re-
named in 2011a, see Interpreted MATLAB Function)

Not supported. Not yet supported by Real-Time Work-
shop/Simulink Coder.

simulink/User-Defined Functions/Interpreted MAT-
LAB Function (new since 2011a)

Not supported. Not yet supported by Real-Time Work-
shop.

simulink/User-Defined Functions/S-Function Builder Supported if TLC file is generated.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form II

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form II Time Varying

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Fixed-Point State-Space

Use discrete sample time.

aNot supported by the S-function CodeFormat which the the FMU target is derived from.
bLimited by the S-function CodeFormat which the the FMU target is derived from.
cTLC-file for the block is missing. Code for the block cannot be generated.
dBlock is not supported for generation of a Simulink Coder/Real-Time Workshop target.
eNot supported by the S-function CodeFormat which the the FMU target is derived from.

8.3.2. Model Export target

• The Model Exchange target uses the code format S-function and target type non real time. This means in general
that the same limitations of Simulink Coder´s native S-function target, rtwsfcn is applied to the FMU target. For
more information about S-function generation limitations, go to http://www.mathworks.se/help/rtw/ug/generat-
ed-s-function-block-deployment.html.

8.3.3. Co-Simulation target

• Only Fixed-step solvers are supported.

• Support for precompiled S-functions is only supported for export of Model Exchange FMUs.

http://www.mathworks.se/help/rtw/ug/generated-s-function-block-deployment.html
http://www.mathworks.se/help/rtw/ug/generated-s-function-block-deployment.html

159

Chapter 9. License installation

9.1. Retrieving a license file
There are different types of license models that can be used with Modelon products.

• Node-locked (No license server required)

This license enables use on a single computer. The license cannot be moved from one computer to another. The
license is locked for use on a computer with a specific MAC address.

• Server (Requires a license server)

This licensing model represents a classic network configuration with a server and users. The server grants or
denies requests from computers in the network to use a program or feature. The license file specifies the maxi-
mum number of concurrent users for a program or feature. There is no restriction for which computer is using
the program or feature, only in the number of programs and features that can be used simultaneously.

The computer on which the server is running cannot be changed. The server computer's MAC address must be
provided to Modelon to generate the license file.

• Evaluation license (Node Locked)

This license enables a program or feature for a limited amount of time and is the same as a node-locked license.

Please contact the Modelon sales department at <sales@modelon.com> to purchase a license or to get an evaluation
license. In order to obtain a license file for a node-locked license, you must provide the MAC address of your
computer. If you are using a license server, you must provide the MAC address of the server. In Section 9.1.1
below, you will find instructions for how to retrieve the MAC address of a computer.

9.1.1. Get MAC address

Modelon uses the Ethernet address (MAC address), also called the host ID, to uniquely identify a specific computer.
Therefore, you must provide the MAC address of the computer on which you want to use the program or feature.
For a server license, the MAC address for the server computer is required, not all the client computers in the network
that will use the program or feature. For a node-locked license, the MAC address of the computer on which the
license will be used must be provided.

Note: Modelon only allows ONE MAC address for each computer. Please disable and unplug all network devices
that are not permanently connected to the computer such as laptop docking stations, virtual machines and USB
network cards.

License installation

160

• Windows

1. Open cmd

Windows 7 and Vista

a. Click the Start button

b. Type cmd in the search bar and press enter.

Windows XP

a. Click the Start button.

b. Click on Run....

c. Type cmd in the text box and click OK.

2. Run lmhostid.exe.

Type the full path to lmhostid.exe within quotes and press enter. lmhostid.exe is normally located in <in-
stallation folder>\license_tools\lmhostid.exe.

3. Use this hostid when you are in contact with Modelon. If multiple hostids are listed, select one that is perma-
nent for the computer.

Figure 9.1 Lmhostid.exe run on Windows listing the computer's MAC address.

• Unix

1. Open a terminal and change directory to the <installation folder>/license_tools/.

License installation

161

Run lmhostid and use the hostid listed when you are in contact with Modelon. If multiple hostids are listed,
select one that is permanent for the computer.

9.2. Install a license

After purchasing a license, you should receive a license file with the file extension *.lic. This file must be put
in a specific folder for the application to find it.

9.2.1. Installing a node-locked license

9.2.1.1. Windows

1. Close the application if it is already running.

2. Open the Application Data folder.

Windows 7 and Windows Vista

a. Click the Start button.

b. Type shell:AppData in the search bar and press enter.

Windows XP

a. Click the Start button.

b. Click on Run....

c. Type shell:AppData in the text box and click OK.

3. The Application Data folder should now be open. Check that its path is of the form C:\Users\YourUser-
Name\AppData\Roaming.

4. Create the folder Modelon\Licenses\Nodelocked if it does not exist already.

5. Put your license file in the folder Nodelocked.

9.2.1.2. Unix

• Copy your license file to the folder <installation folder>\Licenses\Nodelocked.

License installation

162

9.2.1.3. Updating the license

To update the license file, you should overwrite the old license file with the new one. Ensure that the old license file
is overwritten or removed from the folder since it may otherwise be used instead of the new one, and the application
may fail to check out a license. Note that you must restart the program for license changes to take effect.

9.2.2. Installing a server license

Note that these are not instructions for installing a license file on a server. These are instructions for the end user
of the program or feature. The assumption is that the server is already up and running and that the IP address to the
server and the port number is already known. The IP address and the port number, if needed, should be provided
by the license server administrator.

The application can connect to the license-server and daemon either by reading a license file or an environment
variable.

9.2.2.1. Windows

1. Close the application if it is already running.

2. Create an empty text file

Windows 7 and Windows Vista

a. Click the Start button.

b. Type Notepad in the search bar and press enter.

Windows XP

a. Click the Start button.

b. Click on Run....

c. Type Notepad in the text box and click OK.

3. Configure the license file.

a. Copy the following text in to the text document

SERVER <ip-address> ANY <port>
USE_SERVER

b. Change <ip-address> to the IP address of the server.

License installation

163

c. Change <port> to the port number that is being used. If you do not have a port number, you can remove
the whole <port>. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192.168.0.12 ANY 1200
USE_SERVER

d. Save the file with a filename with the extension *.lic in a temporary place. The file will be moved in a
later step. You can now close Notepad.

4. Open the Application Data folder.

Windows 7 and Windows Vista

a. Click the Start button.

b. Type shell:AppData in the search bar and press enter.

Windows XP

a. Click the Start button.

b. Click on Run....

c. Type shell:AppData in the text box and click OK.

The Application Data folder should now open.

5. Create the folder Modelon\Licenses\Server if it does not exist already.

6. Put the license file you just created in the folder Server.

9.2.2.2. Unix

1. Close the program if it is already running.

2. Create an empty file with the file extension name *.lic.

3. Configure the license file.

a. Copy the following text in to the text document

SERVER <ip-address> ANY <port>
USE_SERVER

b. Change <ip-address> to the IP address of the server.

License installation

164

c. Change <port> to the port number that is being used. If you do not have a port number, you can remove
the whole <port>. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192.168.0.12 ANY 1200
USE_SERVER

4. Copy your license file to the folder <installation folder>\Licenses\Server.

9.2.2.3. Using the environment variable

An alternative to specify how the application should connect to the license server is to set the environment variable
MODELON_LICENSE_FILE. The value can be set to port@host, where port and host are the TCP/IP port number
and host name from the SERVER line in the license file. Alternatively, use the shortcut specification, @host, if the
license file SERVER line uses a default TCP/IP port or specifies a port in the default port range (27000–27009).

9.2.2.4. Updating the license

To update the license file, you can either redo the installation instructions described above or make the changes
in the license file directly. Ensure that the old license file is overwritten or removed from the folder since it may
otherwise be used instead of the new one, and the application may fail to check out a license. Note that you must
restart the program before the changes can take effect.

9.3. Installing a license server
To install a license server, you must have a server license file. Please contact <sales@modelon.com> to obtain
the server license file. This license file must also be configured prior to use by by setting the IP address and port
as shown in Section 9.3.1

Modelon products use a licensing solution provided by Flexera Software. It is recommended that you install the
latest version of the server software, which is available from http://learn.flexerasoftware.com/content/ELO-LM-
GRD . Modelon products require a license server version number v11.10.0.0 or later. A license server and a license
daemon are required and are distributed with the product you are installing. If you have not received the server
application or license daemon with your product, please contact <sales@modelon.com>.

The following step by step instructions for installing a license server assume that no other Flexera license server
is already installed.

9.3.1. Configure the license file

When a license server is installed, the server needs a license file provided by Modelon. This file must be configured
before it can be used.

http://learn.flexerasoftware.com/content/ELO-LMGRD
http://learn.flexerasoftware.com/content/ELO-LMGRD

License installation

165

1. Open the license file in a text editor. The file may look like the example below:

SERVER 192.168.0.1 080027004ca5 25012
VENDOR modelon
FEATURE FMI_TOOLBOX modelon 1.0 3-feb-2012 12 SIGN="0076 305..."

2. Edit the SERVER line where the IP address, 192.168.0.1, should be replaced with the IP address of the
server. Also change the port address, 25012, to the desired port or remove it to use default ports. The IP
address and potentially also the port address should be provided to the end users so they can configure their
license files to connect to the server.

9.3.2. Installation on Windows

In the <installation folder>\license_tools folder that is distributed with your product, you will find the
files listed below.

The listed files are used to set up and configure the license server.

• lmgrd.exe (license server)

• modelon.exe (license daemon)

• lmutils.exe (configure- and utility functions)

• lmtools.exe (Windows GUI for setting up the license server as a Windows service)

To configure a license server manager (lmgrd) as a service, you must have Administrator privileges. The service
will run under the LocalSystem account. This account is required to run this utility as a service.

1. Make sure that license daemon modelon.exe is in the same folder as the license server, lmgrd.exe.

2. Run lmtools.exe

3. Click the Configuration using Services button, and then click the Config Services tab.

4. In the Service Name, type the name of the service that you want to define, for example, Modelon License
Server.

5. In the Path to the lmgrd.exe file field, enter or browse to lmgrd.exe.

6. In the Path to the license file field, enter or browse to the server license file.

7. In the Path to the debug log file, enter or browse to the debug log file that this license server should write.
Prepending the debug log file name with the + character appends logging entries. The default location for the
debug log file is the c:\winnt\System32 folder. To specify a different location, be careful to specify a fully
qualified path.

License installation

166

8. Make this license server manager a Windows service by selecting the Use Services check box.

9. Optional. Configure the license server to start at system startup time by selecting the Start Server at Power
Up check box.

10.To save the new Modelon License Server service, click Save Service.

Figure 9.2 Setup the license server with lmtools.exe

11.Click the Service/License File tab. Select the service name from the list presented in the selection box. In this
example, the service name is Modelon License Server.

12.Click the Start/Stop/Reread tab.

13.Start Modelon License Server by clicking the Start Server button. Modelon License Server license server
starts and writes its debug log output to the file specified in the Config Services tab.

9.3.3. Installation on Unix

In the <installation folder>\license_tools folder that is distributed with the product, you can find the files
listed below.

• lmgrd (license server)

• modelon (license daemon)

License installation

167

• lmutil (configure- and utility functions)

Before you start the license server, lmgrd, make sure that license daemon modelon is in the same folder.

Start lmgrd from the UNIX command line using the following syntax:

lmgrd -c license_file_list -L [+]debug_log_path

where license_file_list is either the full path to a license file or a directory containing license files where all
files named *.lic are used. If the license_file_list value contains more than one license file or directory, they must
be separated by colons. debug_log_path is the full path to the debug log file. Prepending debug_log_path with
the + character appends logging entries.

Starting lmgrd from a root account my introduce security risks, and it is therefore recommended that a non-root
account is used instead. If lmgrd must be started by the root user, use the su command to run lmgrd as a non-
privileged user:

su username -c "lmgrd -c license_file_list -l debug_log_path"

Ensure that the vendor daemons listed in the license file have execute permissions for username.

9.4. Troubleshooting license installation

If you experience any problems with the license, the error messages are usually descriptive enough to provide hints
as to the root cause of the problem. If the problem persists, please contact Modelon at <support@modelon.com>.
Before contacting Modelon, support you should run lmdiag and provide the resulting information. Follow the
instructions below to run lmdiag.

9.4.1. Running lmdiag

• Windows

1. Open cmd

Windows 7 and Vista

a. Click the Start button.

b. Type cmd in the search bar and press enter.

Windows XP

a. Click the Start button.

b. Click on Run....

License installation

168

c. Type cmd in the text box and click OK.

2. Run lmdiag.exe.

Type the full path to lmdiag.exe within quotes and press enter. lmdiag.exe is normally located in <in-
stallation folder>\license_tools\lmdiag.exe.

• Unix

• Open a terminal and change directory to the <installation folder>/license_tools/.

Run lmdiag with the ./lmutil lmdiag command.

Note: lmutil requires LSB (Linux Standard Base) compliance to run. Some distributions, e.g. Ubuntu, do not
have LSB compliance by default and can thus not run the program. ./lmutil then fails with a message like

 $> ./lmutil lmdiag
 bash: ./lmutil: No such file or directory

If this error occurs, please check if the required interpreter is installed on your system. The requirement can be
found with the readelf command, and the output should look similar to

 $> readelf -a lmutil | grep interpreter
 [Requesting program interpreter: /lib64/ld-lsb-x86-64.so.3]

LSB should be available for install through a package manager. If installing it is not an alternative, a quick fix
is to symlink the required interpreter to the one on your system, i.e.

 $> ln -s <your ld> <required ld>

Note 2: FlexLM requires that network devices are named eth0, eth1, etc. When other names are used, lmhostid
will always return 0 as host ID. Device names can be shown with the ifconfig command. If your Linux distri-
bution uses a different naming scheme, it needs to be changed. The steps to change the naming scheme depend
on the distribution and release.

169

Chapter 10. Release notes
10.1. Release 2.6.4
• Added support for MATLAB 2018a

• Due to a glibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018a is currently not supported
on Linux (Ubuntu 14.04), the related bug report can be found at: https://bugs.launchpad.net/ubuntu/+source/
eglibc/+bug/1695080.

• Other minor improvements and bug fixes.

10.2. Release 2.6.3
• Added support for MATLAB 2017b.

• Added the new FMU block options useStaticLibraryInCodeGeneration and staticLibraryPathForCode-
Generation. These allow using custom FMU binaries when using Simulink Coder. For more information use
help fmuSetOptionSimulink in MATLAB.

• For the tables in Section 5.10, compatibility with the FMU targets was added for the following blocks:
• Argument Inport
• Argument Outport
• Function Caller
• Matlab System
• Simulink Function
• Event listener
• Initialize Function
• Reset Function
• State Reader
• State Writer
• Terminate Function

• Other minor improvements.

10.3. Release 2.6.2
• Added support for Visual Studio 2013.

• Fixed bug where the wrong FMU resource path was used by the FMU block when simulating in Accelerator
mode.

• Other minor improvements.

https://bugs.launchpad.net/ubuntu/+source/eglibc/+bug/1695080
https://bugs.launchpad.net/ubuntu/+source/eglibc/+bug/1695080

Release notes

170

10.4. Release 2.6.1
• Added support for MATLAB 2017a.

• Fixed bug where adding outputs in the FMU Block GUI failed.

• Other minor improvements.

10.5. Release 2.6
• Better support and documentation for using the FMU block with Simulink Coder targets, see Section 3.4.

• Improved performance for Simulating Model Exchange 2.0 FMUs using the mex interface.

• Updated the FMI Library version to 2.0.2.

• Added warning for not creating string ports when loading an FMU with string inputs/outputs into an FMU block.

• Improved logging for the FMU block. Ensured that for MATLAB 2015b and forward logging is done in the
Diagnostic Viewer when using the GUI, otherwise to the MATLAB prompt.

• Other improvements and bug fixes.

10.6. Release 2.5
• Added support for Exporting FMUs on Linux. See Section 2.2.1.2 for details.

• It is no longer necessary to configure a zip tool. A default implementation in Java is now available.

• Added trim and linearize to FMUModelME2 class, also improved the FMUModelME1 implementations with
better interface and documentation.

• Note: The FMIToolbox 2.5.x releases will be the last to have support for Windows XP, Ubuntu 8.04, Ubuntu
11.04 and early versions of MATLAB. FMIToolbox 2.6 will support MATLAB 2010b (32-bit and 64-bit) and
forward on Windows (7 and 10) and MATLAB 2015a (64-bit) and forward on Linux (64-bit).

• Other improvements and bug fixes.

10.7. Release 2.4
• Added support for MATLAB 2016a and 2016b.

• Added support for Visual Studio 2012 and Visual Studio 2015.

Release notes

171

• Added the FMU export option Include internal signals. When enabled, internal signals will be available in the
exported FMU. See Section 5.8 for more information.

• Removed the vector sizes from the vector names for ports in FMU blocks when loading an FMU. Reloading
the FMU for a block will not change the naming. For example the names for the vector with FMI names "a[1]",
"a[2]", "a[3]" will now have the block port name "a" rather than "a[3]".

• Most of the scripting functions for the FMU block (see Section 3.3.8) now works for FMU blocks with structured
ports activated. Improved error handling for calling the scripting functions with blocks not valid.

• Other improvements and bug fixes.

10.8. Release 2.3.3
• Better support for removing algebraic loops using dependency data. New FMU blocks will use this by default.

The option useDirectFeedthroughData can be used for old blocks.

• Unconnected inputs of FMU blocks now behave as if the Ground block was connected to it, meaning that the
input will be a zero value.

10.9. Release 2.3.2
• Support for FMU Model Exchange export from Simulink with Global (tunable) parameters.

• Added full support for MATLAB 2015b.

Since the revertInlineParametersOffTo2013b command is removed in MATLAB 2015b, it is no longer used
in FMU Model Exchange export.

• Exported FMUs of Simulink models will now have parameters with names that reflect the models structure, see
Chapter Section 5.7.

• The structured names of the inputs and outputs of exported FMUs will now always be legal FMI names (unique
and with no illegal characters).

• Fixed bug where modifying a copied FMU block with structured ports would change the original FMU block.

10.10. Release 2.3.1
• Tunable parameters are now supported for FMU Co-Simulation 2.0 export.

• Added support for MATLAB 2015b with the exception of the targets fmu_me1.tlc and fmu_me2.tlc.

• Added the methods getMin, getMax and getNominal to the ScarlarVariable1 class.

Release notes

172

• Fixed a bug causing the fmiGetXXX functions in the FMI 1.0 MEX interface to return values with wrong
dimensions.

• Other improvements and bug fixes.

10.11. Release 2.3
• Support for FMU Model Exchange 2.0 export from Simulink.

• Changed behavior for Stop Simulation blocks when exporting Co-Simulation and Model Exchange FMUs. They
now cause the simulation to stop without an error (Model verification blocks still causes stops with an error).

• Improved performance of ScalarVariable1 methods.

• Exported Co-Simulation FMUs now support variable communication points. Capability added to
modelDescription.xml: canHandleVariableCommunicationTimeStep="true".

• Fixed a bug affecting S-Functions with row vector parameters.

10.12. Release 2.2.1
• Added optional argument to ScalarVariable1.directDependency to check dependency only on specified input

variables. This greatly improves performance.

• Fixed a bug where simulation of imported FMU:s would not work when using interpolated input signals.

10.13. Release 2.2
• Support for loading and simulating 2.0 FMUs in MATLAB. See Chapter 8 for what is not yet implemented.

• New methods set and get for the MATLAB interface, setValue and getValue is deprecated.

• Added support for MATLAB 2015a.

10.14. Release 2.1
• Support for FMU Co-Simulation 2.0 export from Simulink.

• FMU blocks are now inlined when loaded with 2.0 FMUs and are then supported by Simulink Coder/Real-Time
workshop.

10.15. Release 2.0.1
• Better handling of finding resources for exported Co-Simulation and Model Exchange FMUs.

Release notes

173

10.16. Release 2.0
• Support for loading and simulating 2.0 FMUs with the FMU blocks.

• Optimized the time for loading large FMUs into the FMU blocks.

• Optimized the time for opening the GUI of the FMU blocks loaded with a large FMU.

• Write simulation result to file and the Logger drop down menu in the GUI have been moved from the Ad-
vanced tab to the new Log tab.

• Other improvements and bug fixes.

10.17. Release 1.9
• Added support for MATLAB 2014a and MATLAB 2014b.

From MATLAB 2014a and later, FMU Model Exchange export calls revertInlineParametersOffToR2013b. See
MATLAB 2014a release notes for details regarding implication of this function call.

• Changed linger time from 30 minutes to 2 minutes for FMI Toolbox Coder add-on. Changed linger time from
0 minutes to 2 minutes for FMI Toolbox license.

• Updated MATLAB class constructors FMUModelME1, FMUModelCS1 and loadFMU to take arguments for
setting log file name and instance name. The new interface use name value pair arguments. The old interface
for setting log level is deprecated.

• New method getScalarVariable added. It returns a ScalarVariable1 class given a variable name.

• New method getInstanceName added. It returns the instance name.

• New method getLogFilePath added. It returns the full log file path.

• New method getFMUFilePath added. It returns the full FMU file path.

• Improved simulation time for FMUModelCS1´s simulate function. Use of the old simulate function is depre-
cated.

• Other improvements.

10.18. Release 1.8.6
• Support for Accelerator mode using the FMI blocks.

Release notes

174

• Other improvements and bug fixes.

10.19. Release 1.8.5
• Fix for a memory leak.

10.20. Release 1.8.4
• Support enumerations for Co-Simulation and Model Exchange export.

• Unsupported data types for parameters does no longer give an error when exporting an FMU, now a warning
is given and the parameter is not exposed by the FMU.

• Exported FMUs of Simulink models with bus outputs will use the signal labels of these buses to construct
structured names for the outputs in the FMU.

• When importing FMUs in Simulink with structured names it is possible to use structured naming of the in-
puts/outputs. These inputs/outputs will then be buses with signal labels based on the structural naming.

• Model verification blocks and Stop Simulation blocks now causes exported Co-Simulation and Model Exchange
FMUs to stop the simulation when these are triggered.

10.21. Release 1.8.3
• Sample and offset time for the Co-Simulation block can be set to symbols that are evaluated by Simulink at

simulation time.

• Support for FMU Co-Simulation export from Simulink with Global (tunable) parameters.

• Other improvements and bug fixes.

10.22. Release 1.8.2
• When building simulink models with FMU blocks, the FMUs shared library can now be used.

• Updated getModelVariables method in the FMU classes. It now supports filtering on variable names.

• New method directDependency added to ScalarVariable1 class. It returns a list of all the direct dependencies
defined by the FMU for a particular output variable.

• New factory function loadFMU. It creates an instance of one of the supported FMU classes.

• New FMU block script function added fmuGetInputPortsSimulink. It returns the input ports from an FMU block.

Release notes

175

• New FMU block script function added fmuGetModelDataSimulink. It returns model data.

• New FMU block script function added fmuGetOptionSimulink. It returns an FMU block option.

• New FMU block script function added fmuGetOutputPortsSimulink. It returns the output ports from an FMU
block.

• New FMU block script function added fmuGetValueSimulink. It returns the start value for a variable.

• New FMU block script function added fmuResetAllOutputPortsSimulink. It resets all output ports to default.

• New FMU block script function added fmuResetAllSimulink. It resets all parameter and start values, and all
output ports.

• New FMU block script function added fmuSetOptionSimulink. It sets an FMU block option.

• New FMU block script function added fmuSetOutputPortsSimulink. It sets the output ports for an FMU block.

• Other improvements and bug fixes.

10.23. Release 1.8.1
• MATLAB interface now have an improved API. To get Alias base, units, displayUnits and multiple values are

now supported.

• MATLAB interface now provide the functionality to forward log messages from FMU to a user provided log
listener in MATLAB.

• MATLAB interface now have native and effective support for arrays of variables.

10.24. Release 1.8
• Simulink blocks from FMI Toolbox support dSPACE´s rti1006.tlc target.

• New FMU block script function added fmuResetAllValuesSimulink. It resets all parameter and start values.

• New FMU block script function added fmuResetValueSimulink. It resets one or multiple parameter and start
values.

• New FMU block script function added fmuReloadFMUSimulink. It reloads an FMU block.

• New FMU block script function added fmuLoadFMUSimulink. It loads an FMU block with an FMU file.

• Changed name of the function fmi_toolbox_lic_info to fmitoolbox_license.

Release notes

176

• Changed default value in the Model Exchange Simulink block. The Advanced setting Use tolerance controlled
FMU is now disabled by default.

• Changed default value for the Simulink blocks. The Advanced setting Add new output ports when the model
is reloaded is now disabled by default.

• FMU Model Exchange export target, fmu_me1, now supports linkage of existing S-function object files.

• Bug fixes.

10.25. Release 1.7.2
• Improved handling of event indicator functions for FMU export.

• Bug fix: Setting string parameter values triggered an error in Simulink.

• Other improvements and bug fixes.

10.26. Release 1.7.1
• Bug fix: Failed to link the FMU target object files properly.

10.27. Release 1.7
• Support for FMU Co-Simulation 1.0 export from Simulink.

• Simulink blocks are now supported by Simulink Coder.

• Mask parameters can now be used to set start values.

• Improved handling of the FMU blocks in a Simulink library.

If the FMU block is located in a library(other than itself) the relative path options is now relative to this library.

• Many other improvements and bug fixes.

10.28. Release 1.6.1
• FMU export can now generate FMUs containing non-inlined S-functions(e.g DLL only).

• Improved direct dependency analysis in the FMU export.

• FMU import supports vector input ports.

Release notes

177

• FMU import supports tool based Co-Simulation FMUs.

10.29. Release 1.6
• Support for static and dynamic analysis of FMUs through design-of-experiments (DoE) .

• General toolbox updates for better integration in MATLAB.

• New Windows installer for both 32- and 64-bit MATLAB.

• New Linux package for both 32- and 64-bit MATLAB.

• Unattended installation/uninstallation procedures are now supported.

10.30. Release 1.5
• Support for FMU Model Exchange 1.0 export from Simulink.

10.31. Release 1.4.6
• Bug fix: MATLAB interface function getModelVariables did not work for some MATLAB versions.

10.32. Release 1.4.5
• Updated the MATLAB interface.

• MATLAB interface now prints the log to file.

10.33. Release 1.4.4
• Bug fix: FMU file path was not saved properly causing the reload function to be triggered each time the Simulink

model was opened.

10.34. Release 1.4.3
• Bug fix: FMU models containing no variables could not be properly loaded.

10.35. Release 1.4.2
• Bug fix: Enumerators could not be viewed correctly in the Simulink blocks.

Release notes

178

• Bug fix: Minimum and Maximum values were truncated wrong in the Simulink block.

10.36. Release 1.4.1
• FMI Toolbox is built with FMI Library 2.0a2 to fix bugs.

10.37. Release 1.4
• FMI Toolbox is now based on the FMI Library from JModelica.org.

• Improved performance of the FMU parsing.

• New logger functionality.

10.38. Release 1.3.1
• New Flexera based license system.

• fmuSetValueSimulink now support setting vector values fast and convenient.

• User can now set how the FMU file should be located from the FMU block GUI.

• Bug fixes

10.39. Release 1.3
• FMI for Co-Simulation 1.0 is now supported.

A restructuring of the installation folders is made to support different FMI versions in the future.

• A new block for Co-Simulation is added in Simulink, FMU CS 1.0.

• The Simulink block for Model Exchange changes name from FMU to FMU ME 1.0.

• New examples for Co-Simulation is added. Only for Windows.

• The FMI interface in Matlab is now based on classes. There are two new Matlab classes, one for FMI Co-
Simulation 1.0 and one for FMI Model Exchange 1.0. The previous interface is replaced with these classes.

10.40. Release 1.2
• Parameter and start values can now be set to expressions in the GUI. These are evaluated just before the sim-

ulation starts.

Release notes

179

• New function is added for setting parameter and start values of the FMU in the Simulink model from a MATLAB
script.

• Replaced Block Icon tab with an Advanced tab. In the Advanced tab it is now possible to enable/disable the
logger function in the FMU, setting tolerances in the FMU, use the block icon from the FMU if there is any,
decide if the block name should be updated with the FMU name, if new output ports should be added when
the FMU is reloaded.

• It is now possible to save big models.

• Major GUI update, removing bugs.

10.41. Release 1.1
• Now supports Windows 32-bit, Windows 64-bit, Linux 32-bit and Linux 64-bit.

• A new tutorial, Vehicle Tutorial, demonstrating a car model being controlled from a driver implemented in
Simulink.

• Fixed bug when terminating from fmiInitialize caused segfault in Simulink.

• Fixed bug where adding output ports did not work on some systems.

• The Simulink block does not reload the FMU anymore when the Simulink model is opened. This caused for
instance the output ports to be reset.

10.42. Release 1.0
Initial release:

• Simulation of compiled Modelica models, FMUs, in Simulink.

• Simulation of compiled Modelica model, FMUs, in Matlab scripts.

• Support for fixed step solvers in Simulink

• Graphical user interface for configuration of parameters and outputs in Simulink.

• Generation of result files compliant with Dymola.

180

Bibliography
[Jak2003] Johan Åkesson. Operator Interaction and Optimization in Control Systems. ISRN LUTFD2/

TFRT--3234--SE. Lund University. Sweden. 2003.

	FMI Toolbox User's Guide 2.6.4
	Table of Contents
	Chapter 1. Introduction
	1.1. The FMI Toolbox for MATLAB/Simulink
	1.2. The Functional Mock-up Interface

	Chapter 2. Installation
	2.1. Supported platforms
	2.2. Prerequisites
	2.2.1. MATLAB/Simulink
	2.2.1.1. FMU import
	2.2.1.2. Simulink Coder/Real-Time Workshop

	2.3. Installation procedure
	2.3.1. For Windows
	2.3.2. For Linux
	2.3.3. Set MATLAB path
	2.3.4. Unattended installation
	2.3.4.1. Windows
	2.3.4.2. Linux

	2.4. License information
	2.4.1. Demo mode

	2.5. Uninstallation procedure
	2.5.1. For Windows
	2.5.2. For Linux
	2.5.3. Unattended uninstallation
	2.5.3.1. Windows
	2.5.3.2. Linux

	2.6. Support

	Chapter 3. Simulation with Simulink
	3.1. Introduction
	3.2. Getting started
	3.3. FMU block properties
	3.3.1. Set parameters and variables start values
	3.3.2. Input ports
	3.3.3. Output ports
	3.3.3.1. Direct Feedthrough

	3.3.4. FMU model information
	3.3.5. Log
	3.3.5.1. Create result file
	3.3.5.2. Logger

	3.3.6. Advanced
	3.3.6.1. Block icon and mask
	3.3.6.2. Tolerances (Not for FMU CS 1.0)
	3.3.6.3. Sample times (FMU CS block only)
	3.3.6.4. Reload FMU
	3.3.6.5. Find FMU file on Model load

	3.3.7. Coder
	3.3.8. Scripting FMU block
	3.3.9. Load FMU model
	3.3.10. Reset an FMU model
	3.3.11. Reload FMU model
	3.3.12. Add Structured Ports to the FMU Block
	3.3.13. Using the filter functions

	3.4. FMU block and Simulink Coder
	3.5. Examples
	3.5.1. Changing start values and using the filter functions
	3.5.2. Configure outputs
	3.5.3. Configure ports using structural naming
	3.5.4. Build target containing an FMU block
	3.5.5. Build rti1006.tlc target containing an FMU block
	3.5.5.1. Set start values and parameters

	Chapter 4. Simulation in MATLAB
	4.1. Introduction
	4.2. A first example
	4.3. Using the FMU model classes
	4.3.1. Handle class
	4.3.2. Calling functions
	4.3.3. Help

	4.4. Examples
	4.4.1. Set start values and parameters
	4.4.2. Simulation with inputs
	4.4.3. Simulation with configured output
	4.4.3.1. Using custom solver (Model Exchange only)

	4.5. Upgrading to FMI 2.0
	4.5.1. Converting from FMI 1.0 to FMI 2.0
	4.5.2. Using both FMI 1.0 and FMI 2.0 in scripts

	Chapter 5. FMU export from Simulink
	5.1. Introduction
	5.2. Getting started
	5.3. Simulink Coder targets for FMU export
	5.4. Selecting MEX C compiler
	5.5. Co-Simulation export
	5.5.1. Synchronization of time
	5.5.2. Capability flags
	5.5.3. Configuration Parameters
	5.5.3.1. Solver
	5.5.3.2. Optimization
	5.5.3.3. Real-Time Workshop/Code Generation
	FMU Export
	Report
	Comments
	Symbols
	Custom code
	Debug

	5.5.4. Support for user defined S-Function blocks

	5.6. Model Exchange export
	5.6.1. Configuration Parameters
	5.6.1.1. Solver
	5.6.1.2. Optimization
	5.6.1.3. Real-Time Workshop/Code Generation
	FMU Export
	Report
	Comments
	Symbols
	Custom code
	Debug

	5.6.2. Support for user defined S-Function blocks

	5.7. Parameters
	5.8. Internal signals
	5.8.1. Test points

	5.9. Supported data types
	5.10. Supported blocks
	5.11. Examples
	5.11.1. Using a Simulink model to control a Vehicle model
	5.11.1.1. Export Simulink model as FMU
	5.11.1.2. Import FMU in vehicle model and simulate it in Dymola

	Chapter 6. Design of Experiments
	6.1. Introduction
	6.1.1. Concepts
	6.1.2. Workflow

	6.2. Getting started
	6.3. Function reference
	6.3.1. FMUModelME1
	6.3.1.1. trim
	6.3.1.2. linearize

	6.3.2. FMUDoESetup
	6.3.2.1. Constructor
	6.3.2.2. DoE methods
	qmc - Quasi-Monte Carlo analysis
	mc - Monte Carlo analysis
	fullfact - Full factorial analysis
	custom - User-defined test matrix

	6.3.3. FMUDoEResult
	6.3.3.1. properties
	6.3.3.2. main_effects
	6.3.3.3. bode
	6.3.3.4. step

	6.4. Examples
	6.4.1. Mass-Spring system
	6.4.1.1. Define the Experiment Setup
	6.4.1.2. Run DoE experiments
	6.4.1.3. Analyze results
	Steady-state
	Dynamic analysis

	Chapter 7. Tutorial examples
	7.1. Stabilization of a Furuta pendulum system
	7.1.1. Tutorial
	7.1.1.1. Simulate Furuta model with co-simulation block

	7.2. Vehicle dynamics model simulated in Simulink with a driver
	7.2.1. Tutorial

	Chapter 8. Limitations
	8.1. Simulink FMU block
	8.2. MATLAB FMU Classes
	8.3. FMU Export
	8.3.1. Common target
	8.3.2. Model Export target
	8.3.3. Co-Simulation target

	Chapter 9. License installation
	9.1. Retrieving a license file
	9.1.1. Get MAC address

	9.2. Install a license
	9.2.1. Installing a node-locked license
	9.2.1.1. Windows
	9.2.1.2. Unix
	9.2.1.3. Updating the license

	9.2.2. Installing a server license
	9.2.2.1. Windows
	9.2.2.2. Unix
	9.2.2.3. Using the environment variable
	9.2.2.4. Updating the license

	9.3. Installing a license server
	9.3.1. Configure the license file
	9.3.2. Installation on Windows
	9.3.3. Installation on Unix

	9.4. Troubleshooting license installation
	9.4.1. Running lmdiag

	Chapter 10. Release notes
	10.1. Release 2.6.4
	10.2. Release 2.6.3
	10.3. Release 2.6.2
	10.4. Release 2.6.1
	10.5. Release 2.6
	10.6. Release 2.5
	10.7. Release 2.4
	10.8. Release 2.3.3
	10.9. Release 2.3.2
	10.10. Release 2.3.1
	10.11. Release 2.3
	10.12. Release 2.2.1
	10.13. Release 2.2
	10.14. Release 2.1
	10.15. Release 2.0.1
	10.16. Release 2.0
	10.17. Release 1.9
	10.18. Release 1.8.6
	10.19. Release 1.8.5
	10.20. Release 1.8.4
	10.21. Release 1.8.3
	10.22. Release 1.8.2
	10.23. Release 1.8.1
	10.24. Release 1.8
	10.25. Release 1.7.2
	10.26. Release 1.7.1
	10.27. Release 1.7
	10.28. Release 1.6.1
	10.29. Release 1.6
	10.30. Release 1.5
	10.31. Release 1.4.6
	10.32. Release 1.4.5
	10.33. Release 1.4.4
	10.34. Release 1.4.3
	10.35. Release 1.4.2
	10.36. Release 1.4.1
	10.37. Release 1.4
	10.38. Release 1.3.1
	10.39. Release 1.3
	10.40. Release 1.2
	10.41. Release 1.1
	10.42. Release 1.0

	Bibliography

