FMI Toolbox User's Guide 2.6.4

FMI Toolbox User's Guide 2.6.4
Publication date 2018-07-23

Copyright © 2018 Modelon AB

Ideon Science Park

SE-22370 LUND

<i nf o@model on. con®

Self publishing

ALL RIGHTS RESERVED. This document contains material protected under International Copyright Laws and Treaties. Any unauthorized
reprint or use of thismaterial is prohibited. No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, or by any information storage and retrieval system without express written permission from the author /
publisher.

Table of Contents

IR 1 1 o [oo TN 1
1.1. The FMI Toolbox for MATLAB/SIMUIINKcuieieiiiee e 1
1.2. The Functional MOCK-UP TNEEITECEoieii e 1

B2 1= =1 = 1 o o 3
2.1, SUPPOITEd PIALFOMMS ...t ettt 3
2.2, PrEFEOUISITES ...ttt ettt e e et e et e e e e e e e e 3

221 MATLAB/ISIMUIINK ..oveieieiiiei et r et r e eaees 3
P T O I 1111 o o APPSR 3

2.2.1.2. Smulink Coder/Real-Time WOrkshopccooveuuiiiiiiiiniiiiiii e 4

2.3, INStAllEtiON PrOCEAUIEuieieiii ettt e ettt e e e et e e e ettt e e e e ebb e e e eettaeaeee 6
2.3.1. FOT WINOOWS .ot e e e e e e e e s e e e e aneanen 6

B2 T o G T 0 N 7
2.3.3. SEt MATLAB Path e 7
2.3.4. Unattended iNStAll@tionc.iiniiniiiii e 7

DA I 3t T YAV 1o (o 1V 7

2R T 1 UG 8

2.4, LiCenSe iNFOMMELION .. c..iniinitii ettt e e et e e e e e e s e e e e e ens 9
A T I = 1100 1 0o [9

2.5, UNINSLall@tion ProCRAUIEcieiii et e et e et e e b 9
2.5. 1. FOT WINOOWS ..o e e e e e e e e e s e s eneaneanen 9

B2 T o G T 0 N 9
2.5.3. Unattended UNiNStallGtioncouiiniiniieii e e e e eaas 10

D2 TR 00 TR YY1 T (o 1 10

B2 T 2 1 UGN 10

A SIS U o] PRSP 11

3. SIMUIEEON WIth SIMUIINK ..ot e e e e e e e et e et e aeeaees 12
G T O 10T U (o o X 12
3.2, GEIING SO ...t ettt 12
3.3, FMU DIOCK PrOPEITIES ...ttt ettt et e et e e et e e e et e e eaees 18

3.3.1. Set parameters and variables start VAlUES ... 18
G 2 1o U1 oo T PSP PPN 21
3.3.3. OULPUL POFES .. veeete ettt ettt ettt et et e e et et r e e n et e e et e e et n e e e eanaeees 21
3.3.3.1. Direct FEedthroughuiiiiiii i 24
3.3.4. FMU MOodel infOrmMationocuieiiiiiiiei et e e 26
G o o PSPPSR 28
3.3.5.1. Create reSUIE FIlE cou.eniniii e 29
A I oo o[PSPPI 30
TR I T X0 (V7 11 = 30
3.3.6.1. BIOCK iCON @NA MESKvniinieieiee e e e e e e 31
3.3.6.2. Tolerances (Not for FMU CS 1.0) ...cccvvuniiiiiiiiiieiii et 32

FMI Toolbox User's Guide 2.6.4

3.3.6.3. Sample times (FMU CS block ONlY)uiieiiiiei e 32

3.3.6.4. REOA FIMU .ottt 32

3.3.6.5. Find FMU file on Model 10adcooiiiiiiiiiie e 32

I I A 0o o (= SO TSP PPPTPTTRR 33
3.3.8. Scripting FIMU DIOCK ... e 34
3.3.9. Load FIMU MOGEoieiiiiiet et 35
3.3.10. Reset @an FIMU MOGELouuuiiiiieii et 36
3.3.11. Reload FIMU MOGELueiiiieiiiieee e e e 36
3.3.12. Add Structured Ports to the FMU BIOCKoiiiiiiiiiiiiiice e 36
3.3.13. Using the filter fUNCLIONScouuiii e 36

3.4. FMU block and SIMUIINK COOEYcc.uuieiiiiiieeeie et 37
R = 1 o= PSPPI 38
3.5.1. Changing start values and using the filter functionsccoooiiiiiiiiii e 38
3.5.2. CONFIQUIE OULPULS ...ttt ettt ettt et e e et e et e e et e e aaeeenaaeeen 40
3.5.3. Configure ports using Structural NAMINGcoeuu e eeens 45
3.5.4. Build target containing an FIMU blOCKooiuiiiiii e, 50
3.5.5. Build rti1006.tlc target containing an FMU blockKccooviiiiiiiiie, 54
3.5.5.1. Set start values and ParameEterSovuuuiieen e 57

4, SIMUIELTION IN MATLAB ..ottt ettt e e e et e e eeraaeeees 58
I 1 g 11 (o [F o1 T o PP PPPTTR 58
A2, A FIFSE @XAMPIE <. e 58
4.3. Using the FIMU MOGEl CIaSSESieuiiiii et 60
4.3 1. HANI® CIaSSvueiieiii ettt 60
4.3.2. Calling fUNCLIONSccuiii ettt e e e et e et e eaae e 60
3.3, HEID e 61

A EXBIMPIES ..ottt ettt e e e e et e e e ean s 62
4.4.1. Set start values and ParaMELErSc.uu it 62
4.4.2. SIMUlation With INPULSo.en e 64
4.4.3. Simulation with configured OULPULooeuniiiiieii e e 66
4.4.3.1. Using custom solver (Model Exchange only) ..o 68

4.5. Upgrading to FMI 2.0 ..ot aa 68
4.5.1. Converting from FMI 1.0 t0 FIMIT 2.0 ...oeiinnii e 68
4.5.2. Using both FMI 1.0 and FMI 2.0 iN SCHPLSuuiieiiiiieei e 70

5. FMU export from SIMUIINKooo. e et et e e e e e ea e eanaees 71
L3N B [oo (B [o o RSP SUPP PRSPPI 71
5.2, GELEING SEAMEA ... e et aa e 71
5.3. Simulink Coder targets for FMU @XPOITiiuiiiieii e 77
5.4. Selecting MEX C COMPITE «...nniiieiii et e e et e e e e e e eees 79
5.5, CO-SIMUIBLION EXPONT ...ttt ettt et e et e et e e et e et e e b e e et e e et e eaneeenns 79
5.5.1. Synchronization Of tIMEoouniiii e e 79
5.5.2. Capability Flagscoeeeueiiieee et 80
5.5.3. Configuration Par@mMELerSoeeuuiiii it eas 81

FMI Toolbox User's Guide 2.6.4

B.5.3.0. SOIVEN .ttt 81

SRRCIZAN © o 1] 1012 1 (o o H PP 81

5.5.3.3. Real-Time Workshop/Code Generationcceuvieuniiiuiiiiieeiieeeieeeieeeannn 81

5.5.4. Support for user defined S-FUNCtion DIOCKSc..oiiiiii 84

5.6. MOl EXChANGE EXPOIT ... ettt ettt e et e et e e e e e et e et e eanaeeees 86
5.6.1. Configuration ParaMELErSoeiuuiiii it eans 86

BUB. 1.1 SOIVEN .ttt 86

XS IV © o 1] 1412z 1 [o o HO PP 87

5.6.1.3. Real-Time Workshop/Code Generationcceuvieuniiiiiaiiieeiieeeieeeieeeanne 87

5.6.2. Support for user defined S-FUNCLion DIOCKSo..iiiiiii Q0

B.7. PArBIMEBLETSeeieeie e 91
5.8, INENEl SIGNAIS «..eeiii e e 91
LS N T == O oo 1 | £ T PP PPTRPPN 93

5.9. SUPPOITEA A LYPES ... ceneeit ettt ettt et et et e eeans 94
5.10. SUPPOITEd DIOCKS ... et 95
L I - 0T o =SSP PTUPTN 106
5.11.1. Using a Simulink model to control aVehicle modelccoooiiiiiiiiiii, 106
5.11.1.1. Export Simulink model 88 FIMUcoouiiiiiiiiie e 106

5.11.1.2. Import FMU in vehicle model and simulate it in Dymola...........c...ccoveeenn. 108

6. DESION Of EXPEITMENTS ...ttt ettt ettt e e e e e e et e e et e e et e e aa e aeaaeeans 112
L2 W [oo (8 1o o PP TPPPPTTUPPI 112
Lo I R 0] < o £ ST RPTPP 112
B.1.2. WOTKFIOW ...ttt e e e e 113

6.2, GEIING STAITEAeeeeeeeeei ettt 113
6.3, FUNCLION TEFEIEINGCE ...ttt ettt e et e e e e 116
6.3.1. FMUMOUEIMEL ...ttt 117
LR 0 0 T {11 o PP TP PPPPT 117

B.3.1.2. lINBAIZE .. .eeeit ettt 118

6.3.2. FMUDOESELUDvuiieiiitiee ettt ettt ettt et 119
6.3.2.1. CONSITUCTON ...evieieieie ettt e e e e e enes 119

6.3.2.2. DOE MENOOScooiiiiiiiii e 122

6.3.3. FMUDOERESUILiiiiii ettt e s 125
Lo I o] (0o < 4 11 PP 125

6.3.3.2. MaAIN_EffECLS ..o 126

B.3.3.3. DOUE ...ttt 128

B.3.3.4. S ..ttt 129

B.4. EXAMPIES ...ttt et e e e et e e e 129
6.4.1. MBSS-SPING SYSEEIM ...ttt ettt et e e et e et e et e et e e e eeanns 129
6.4.1.1. Define the EXPeriment SEUDceuuiiuieii e 129

6.4.1.2. RUN DOE EXPEITMENTSceeiiieiiii ettt e e e e eanns 130

6.4.1.3. ANAIYZE FESUILS ... ettt 131

7. TULOFT@l EXAMPIES ...ttt et e e et et e ettt e e e et ta e e eb e e et e e et aeeanaaee 138

FMI Toolbox User's Guide 2.6.4

7.1. Stabilization of a Furuta pendulum SYSIEMo 138
4% T T V(o = PSPPSRI 139
7.1.1.1. Simulate Furuta model with co-simulation blockccoooiiiiiiiin . 146

7.2. Vehicle dynamics model simulated in Simulink with adriverccooooiiiiiiiiii, 148
4 T NV (o= PP PP TR SPPPTT 149

8. LIMITALIONS ... ettt ettt et ettt et e enaas 156
8.1 SIMUIINK FMU DIOCK ...coviiieieii e 156
8.2. MATLAB FIMU CISSEScciitiieeeit ettt ettt ettt e et e et e e e 156
8.3 FIMU EXPONT .. ettt e e e 156
8.3.1. COMIMON TAIGEL ... ettt ettt et et et et e e e et e et e et e en e an e enns 156
8.3.2. MOAEl EXPOIt TArgELceu i eieen ettt et e et e et e e e e e 158
8.3.3. CO-SIMUIBLION TAIGEL ...ceneiit et e e e et e e e e e e eeen 158

9. LICENSE INSLAIBEIIONeeeetee ettt ettt e et et 159
9.1. Retrieving @ liCENSE FIl@o e 159
9.1.1. Gt MAC BOAIESS ...ttt ettt 159

9.2, INSEAIl 8 THCENSE ...ttt 161
9.2.1. Installing a node-10CKed [HCENSEcuuniiiiie e 161

9.2 1.1 WINUOWS ...ttt ettt e e et e e et e e e s 161

9.2.1.2. UNIX ettt ettt 161

9.2.1.3. Updating the lHCENSEceeiiiii e 162

9.2.2. INStAlliNg 8 SEIVEN lICENSE «...u i 162
9.2.2. 1. WINUOWS ...ttt ettt e et e e et e e e e e s 162

9.2.2.2. UNIX 1.ttt 163

9.2.2.3. Using the environment variablecoooeiiiiiiiii e 164

9.2.2.4. Updating the lHCENSEcee e 164

9.3. INStAlliNG @ lICENSE SEIVEN ... e e e e 164
9.3.1. Configure the lICense fille e 164
9.3.2. Installation 0N WINOOWSuuiiiiiiiieieiie et 165
9.3.3. INSLAEEION ON UNIX ..ttt 166

9.4. Troubleshooting license INSLAlEtiONvieunii e 167
9.4.1. RUNNING IMOIAQ .t eeee ettt et e et e e et e e e e ea e 167

JO. REIBASE NOLES ... cieetii ettt ettt et et e et et e e et et e et e e e s 169
JO1 REIEESE 2.6.4 ... 169
JO.2. REIEASE 2.6.3 ...ttt 169
JO.3. REIEASE 2.6.2 ...t 169
JO4. REIEESE 2.6.1 ...t 170
JO5. REIEASE 2.6 ..ottt 170
JO6. REIEASE 2.5 ..o 170
JO7. REIEASE 2.4 ..o 170
J0.8. REIEASE 2.3.3 .. 171
J0.9. REIEESE 2.3.2 .. 171
JO.10. REIEASE 2.3.1 ..ottt et 171

Vi

FMI Toolbox User's Guide 2.6.4

10.11.
10.12.
10.13.
10.14.
10.15.
10.16.
10.17.
10.18.
10.19.
10.20.
10.21.
10.22.
10.23.
10.24.
10.25.
10.26.
10.27.
10.28.
10.29.
10.30.
10.31.
10.32.
10.33.
10.34.
10.35.
10.36.
10.37.
10.38.
10.39.
10.40.
10.41.
10.42.
Bibliography

REIBESE 2.3 i e e 172
REIBASE 2.2.1 ...t 172
REIBESE 2.2 ... 172
REIBESE 2.1 ... 172
REIEASE 2.0.1 ..ot et eee 172
REIASE 2.0 ... 173
REIESE 1.9 ... 173
REIEASE L1.8.6eeiitii et et et eee 173
REIEASE L1.8.5 ..ottt 174
REIEASE 1.8.4 ..ot 174
REIBASE 1.8.3 ..ot e eee 174
REIBASE 1.8.2 ..ot e et 174
REIEASE 1.8.1 ..ottt et 175
REIBASE 1.8 ...t 175
REIBASE 1.7.2 ..ot 176
REIASE L.7.0 ettt e e eee 176
REIBESE 1.7 et 176
REIASE L1.6.1 ..ottt ettt et e e aee 176
REIBASE 1.6 ...ttt 177
REIBASE 1.5 .ot e e 177
REIBASE 1.4.6 ..ottt e 177
REIBASE 145 ..ot 177
REIBASE 14,4 ..o 177
REIBASE L1.4.3 ..ot et 177
REIBASE 1.4.2 ..ot e 177
REIEASE 14,1 ..ot et e et 178
REIASE 1.4 ..o 178
REIASE L1.3.0 .oiiiiiit ettt et e e e eee 178
REIBASE 1.3 ..t 178
REIASE 1.2 ... 178
REIASE L1 ...ttt 179
REIESE 1.0 ...ttt 179

.. 180

vii

Chapter 1. Introduction
1.1. The FMI Toolbox for MATLAB/Simulink

The FMI Toolbox for MATLAB integrates Modelica-based physical modeling into the MATLAB/Simulink envi-
ronment. FMI Toolbox offers the following main features:

Simulation of compiled dynamic models, FMUs, in Simulink. FMUs may be generated by an FMI-compliant
tool such as SimulationX or Dymola. The Simulink FMU block offers configuration of parameter and start
valuesaswell asblock outputs. The Simulink import supports FM1 version 1.0 and 2.0 for both Model Exchange
and Co-Simulation FMUs.

Export of Simulink modelsto FMUs. FMUs may be smulated in FMI compliant simulation tools such as Sim-
ulationX or Dymola. Export is supported for FMI version 1.0 and 2.0 for Modédl Exchange and Co-Simulation.
Requires Simulink Coder and FMI Toolbox Coder add-on.

Simulation of compiled dynamic models, FMUs, using MATLAB'sbuilt inintegrators (e.g., ode45 and odel5s).
This feature makes FMI Toolbox useful also for users without access to Simulink.

Static and dynamic analysis of FMUs through design-of-experiments (DoE) functions for optimization, cali-
bration, control design, and robustness analysis. The dynamic analysis features require the MATLAB Control
System Tool box.

The FMI Toolbox supports FMI version 1.0 and 2.0 importin MATLAB for both Model Exchange and for Co-
Simulation. DoE analysisis supported for Model Exchange 1.0.

FMU blocks are supported by Simulink Coder/Real-Time Workshop. It is possible to build a Simulink model
containing an FMU block and run it on e.g dSPACE"s DS1006 platform for HIL (hardware-in-the-loop) simu-
lations.

1.2. The Functional Mock-up Interface

The Functional Mock-up Interface is a standard for exchange of compiled dynamic models, and is intended to
promote model reuse and tool interoperability. Several tools provide export of Functional Mock-up Units (FMUs),
all of which can be used with the FMI Toolbox for MATLAB. FMI provides two different formats for exchange
of models:

FMI for Model Exchange (FMI-ME). The FMI-ME specification is based on a continuous-time hybrid Ordinary
Differential Equation (ODE) representation. The FMU-ME provides inputs and outputs and exposes functions
for setting parameters and computing the derivatives of the ODE. Environments importing FMU-MES need to
provide an integrator, or ODE solver, that integrates the dynamics of the model.

Introduction

e FMI for Co-Simulation (FMI-CS). The FMI-CS specification provides a model representation where both the
model and an integrator (ODE solver) is encapsulated inside the FMU-CS. Similar to the FMI-ME, the FMU-
CS provides inputs and outputs and means to set model parameters. It also provides a function to integrate the
dynamics of the model for a specified time interval. Environments importing FMU-CS' therefore do not have

to provide an integrator.

The FMI Toolbox for MATLAB supportsimport for both the Model Exchange and Co-Simulation specifications.
Simulink models can be exported as Model Exchange or Co-Simulation FM Us.

Chapter 2. Installation
2.1. Supported platforms

The FMI Toolbox for MATLAB is supported on Windows 7, Windows 10, and Ubuntu 14.04 (Trusty Tahr).
Thereare 2 different installers, one for Windows (32- and 64-bit) MATLAB and onefor Linux (64-bit) MATLAB.
The installer's name indicates which one of these it is. FMIToolbox is supported for MATLAB 2010b or later on
Windows and for MATLAB 2015ato MATLAB 2017b on Ubuntu 14.04 (64-bit).

Make sureyou install the right one by typing conput er inthe MATLAB Command Window to get the computer
type on which MATLAB is executing. Then look in table below to find the right installer to use.

>> conput er
ans =
PCW N

In this example, the installer FM Tool box- X. X- wi n. exe should be used. X. X are the placeholder the version
numbers of FMI Toolbox installer.

Table 2.1 Different installersfor MATLAB

Computer type on which MATLAB is executing Installer touse
PCWIN FM Tool box- X. X- wi n. exe
PCWIN64 FM Tool box- X. X-wi n. exe
GLNX86 FM - Tool box_X. X_linux.tar.gz
GLNXAG64 FM - Tool box_X. X_li nux. tar.gz

2.2. Prerequisites

Please make sure that all prerequisites are fulfilled before installing the product.

2.2.1. MATLAB/Simulink

Verify that your software version is amongst those supported in the tables below.

2.2.1.1. FMU import

On Windows, al MATLAB versions from 2010b to 2018a are supported. On Linux (Ubuntu) MATLAB versions
between 2015aand 2017b are supported. Thistableliststhe MATLAB/Simulink versionsthat are tested for import
and simulation of FMUs.

Installation

Table 2.2 Supported MATLAB/Simulink

MATLAB version (Simulink version) Supported on Windows Supported on Linux
MATLAB 9.4 - R2018a (Simulink 9.1) Yes No®
MATLAB 9.3 - R2017b (Simulink 9.0) Yes Yes
MATLAB 9.2 - R2017a (Simulink 8.9) Yes Yes
MATLAB 9.1 - R2016b (Simulink 8.8) Yes Yes
MATLAB 9.0 - R2016a (Simulink 8.7) Yes Yes
MATLAB 8.6 - R2015b (Simulink 8.6) Yes Yes
MATLAB 8.5 - R2015a (Simulink 8.5) Yes Yes
MATLAB 8.4 - R2014b (Simulink 8.4) Yes No
MATLAB 8.3 - R2014a (Simulink 8.3) Yes No
MATLAB 8.2 - R2013b (Simulink 8.2) Yes No
MATLAB 8.1 - R2013a (Simulink 8.1) Yes No
MATLAB 8 - R2012b (Simulink 8) Yes No
MATLAB 7.14 - R2012a (Simulink 7.9) Yes No
MATLAB 7.13 - R2011b (Simulink 7.8) Yes No
MATLAB 7.12 - R2011a (Simulink 7.7) Yes No
MATLAB 7.11.2 - R2010b SP 2 (Simulink 7.6.2) Yes No
MATLAB 7.11.1 - R2010b SP 1 (Simulink 7.6.1) Yes No
MATLAB 7.11.0 - R2010b (Simulink 7.6) Yes No

#Dueto aglibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018ais currently not supported on Linux (Ubuntu 14.04)

Thefeaturesfor dynamic DoE analysis (linearization, bode, and step response plots) requirethe MATLAB Control
System Tool box.

2.2.1.2. Simulink Coder/Real-Time Workshop

Note: ThisisONLY required for exporting FMUs from Simulink or when Simulink Coder/Real-Time Workshop
is used to build models that contains an FMU block. Verify that your Simulink Coder/Real-Time Workshop and
target compiler is amongst those supported, see Table 2.3 and Table 2.4 respectively.

In order to build Simulink models with the target rti1006.tlc that contains the FMU blocks, the FMU must contain
it's source code. For alist of FMUs that has been tested, see Table 2.6. For alist of targets that are supported, see
Table 2.5. For more even more details see, Section 3.4.

Note:It is not yet possible to build Simulink models that contains the FM U blocks on Linux.

Installation

Table 2.3 Supported Simulink Coder/Real-TimeWorkshop

Simulink Coder (MATLAB version) Supported on Windows Supported on Linux
Simulink Coder 8.14 (R2018a) Yes No?
Simulink Coder 8.13 (R2017b) Yes Yes
Simulink Coder 8.12 (R20174) Yes Yes
Simulink Coder 8.11 (R2016b) Yes Yes
Simulink Coder 8.10 (R20164) Yes Yes
Simulink Coder 8.9 (R2015b) Yes Yes
Simulink Coder 8.8 (R2015a) Yes Yes
Simulink Coder 8.7 (R2014b) Yes No
Simulink Coder 8.6 (R20144) Yes No
Simulink Coder 8.5 (R2013b) Yes No
Simulink Coder 8.4 (R2013a) Yes No
Simulink Coder 8.3 (R2012b) Yes No
Simulink Coder 8.2 (R20124) Yes No
Simulink Coder 8.1 (R2011b) Yes No
Simulink Coder 8.0 (R2011a) Yes No
Real-Time Workshop 7.6.2 (R2010b Service Pack 2) Yes No
Real-Time Workshop 7.6.1 (R2010b Service Pack 1) Yes No
Real-Time Workshop 7.6 (R2010b) Yes No

#Dueto aglibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018ais currently not supported on Linux (Ubuntu 14.04)

Table 2.4 Supported C compilers

Compilerson Windows Compilerson Linux
Microsoft Visual C++ 2015 (Professional) GCC 4.7
Microsoft Visual C++ 2013 (Professional) GCC4.9

Microsoft Visual C++ 2012 (Professional)

Microsoft Visual C++ 2010 (Professional & Express)

Microsoft Visual C++ 2008 (Express)

Microsoft Visual C++ 2005 (Professional & Express)

Installation

Table 2.5 Targets supported and tested with the FMU blocks

Target Note Target developer vendor
grt.tlc MathWorks
grt_malloc.tlc MathWorks
rsim.tic MathWorks
rtwsfen.tic MathWorks
fmu_mel.tlic Modelon
fmu_me2.tic Modelon
fmu_csl.tlc Modelon
fmu_cs2.tlc Modelon
rti1006.tIc Tested for ASPACE'sRCP & HIL |[dSPACE

releases; 7.2 with service pack 1
and 2013-A with service pack 1.

Table 2.6 Source code FMUs tested and supported by the FMU block
FMU Generation tool

Dymola 2014 FDO1

Dymola 2014

Dymola 2015 FDO1 - Refresh - 20141218
Dymola 2016

Dymola 2016 FD0O1

Dymola 2017

Dymola 2017 FDO1

2.3. Installation procedure

The following steps are needed to install and enable FMI Toolbox in MATLAB.

2.3.1. For Windows

1. Double click on the FMI Toolbox-X.X_win.exeinstaller to run it and follow the installation instructions.

After the installation has completed you will find afolder for the FMI Toolbox in the Windows Start menu.
From the Start menu the User's Guide in PDF format can be reached and an uninstaller for FM| Toolbox.

2. To enable the toolbox in MATLAB, a search path to the MATLAB folder in the FMI Toolbox installation
folder must be added. To add this path in MATLAB, see Section 2.3.3.

Installation

3. Without alicense file installed, FMI Toolbox will run in Demo mode. Please read, Section 2.4, for further
information.

2.3.2. For Linux

1. TheFMI Toolbox for Linux comesin a*.tar.gz file. Thisis a compressed archive file. To decompress and
extract the files, open aterminal window. Go to the folder wherethe*. t ar . gz fileisfound, in this example
it's on the Deskt op.

ba@a- deskt op: ~$ cd $HOVE/ Deskt op

2. Extractthe*. tar. gz fileusingtar withthe- xvf optionfollowed by thenameof the*. t ar . gz fileand thenthe
- coption followed by theinstallation folder. In this example the FMI Toolbox isinstalled in the $HOVE folder.
Notice, this command overwrites existing files, but does not removefiles, i.el i cense. | i ¢ ishot changed.

ba@a- deskt op: ~/ Deskt op$ tar -xvzf FM _Tool box- X. X-1i nux.tar.gz -C $HOVE/

This creates anew folder called Model on in $HOVE where al the filesare put in.

2.3.3. Set MATLAB path

The MATLAB path must include the path to the FMI Toolbox installation folder in order to enable the tool box.
Toto this, follow the procedure below.

1. InMATLAB change current directory to the installation folder of FMI Toolbox, e.g:
>> cd 'C\Program Fil es (x86)\ Model on\ FM Tool box X. X
2. Runthe setup function to set the MATLAB path

>> set up

2.3.4. Unattended installation

2.3.4.1. Windows

The Windows installer can be run unattended from the command prompt. The installer takes the arguments in
Table 2.7.

Table 2.7 Installer arguments
Arguments Description

INCRC Disables the CRC check, unless CRCCheck force was
used in the script.

/S Runstheinstaler or uninstaller silently.

Installation

Arguments Description

/D Sets the default installation directory ($INSTDIR),
overriding InstallDir and Install DirRegKey. It must
be the last parameter used in the command line and
must not contain any quotes, even if the path contains
spaces. Only absolute paths are supported.

MATLAB can be run from the command prompt, for more information see http://www.mathworks.se/hel p/mat-
|ab/ref/matlabwindows.html. This can be used to setup the MATLAB path and install alicensefile.

In the example below, the installer is run from the command prompt. MATLAB is then started with a command
line argument that runs inside MATLAB. This argument changes current directory in MATLAB to where FMI
Toolbox isinstalled and then runs the setup function. setup updates and saves the MATLAB path and installs the
provided licensefile.

>"FM Tool box- X. X-wi n. exe" /S [/ D=C:\ Program Fil es (x86)\ Mdel on\ FM Tool box X. X
>matlab -r "cd 'C \Program Fil es (x86)\ Model on\ FM Tool box X X ;setup('C \tenp\license.lic', true);exit;"

For more information on how to install the license file, see the help for the setup functionin MATLAB.

Note: The installer must run with administrator privileges to eliminate the User Account Control dialog that oth-
erwise appear when the installer is started.

Note: MATLAB must run with administrator privileges to make sure that the MATLAB path is properly saved.

2.3.4.2. Linux

The unattended installation procedure for FMI Toolbox on Linux is done in the following steps:
1. Extract the*.tar.gzfileto theinstallation folder, see Section 2.3.2 for more information.

2. Update MATLAB path to include the FMI Toolbox files.

MATLAB can be run from the command prompt, for more information see http://www.mathworks.se/hel p/mat-
[ab/ref/matlabunix.html. This can be used to setup the MATLAB path and install alicensefile.

In the example below, the installer is run from the command prompt. MATLAB is then started with a command
line argument that runs inside MATLAB. This argument changes current directory in MATLAB to where FMI
Toolbox isinstalled and then runs the setup function. setup updates and saves the MATLAB path and installs the
provided licensefile.

>tar -xvzf FM _Tool box- X. X-linux.tar.gz -C <install _dir>
>matlab -r "cd '<install _dir>/Mdel on/ FM _Tool box_X. X' ; setup('<license file dir>/license.lic', true);exit;

For more information on how to install the license file, see the help for the setup functionin MATLAB.

Installation

Note: MATLAB must run with administrator privileges to make sure that the MATLAB path is properly saved.

2.4. License information

The section references from below are part of Modelons license instructions for the Flex enabled products in
Chapter 9.

For instruction on how to retrieve alicensefile, see Section 9.1.

For instructions on how to install alicense file, see Section 9.2.

For instructions on how to install alicense server, see Section 9.3.

For trouble shooting and contacting Modelon support, see Section 9.4.

To use full version of FMI Toolbox, a FM| Toolbox license is required. To use the FMU export from Simulink,
aFMI Toolbox Coder add-on licenseis also required. The licenses has alinger time of 2 minutes. Linger time
means that the license stays checked out for the specified period of time beyond itscheck in. Thelicenseis checked
inwhenthe MATLAB sessionisclosed. Thisisasafety precaution in casethat aMATLAB sessionisaccidentally
closed or purposely restarted so that no other user checks out the license in between the MATLAB sessions.

Note that thereisafunctionin MATLAB that can print useful licenseinformation, f i t ool box_| i cense. Usethe
help command in MATLAB to get further information.

2.4.1. Demo mode

Running the program in demo maode limits the FMUs that can be used to the ones that are distributed as examples.
2.5. Uninstallation procedure
2.5.1. For Windows

FMI Toolbox provides an uninstaller. The following steps uninstalls the FM1 Toolbox.
1. Makesurethat MATLAB is closed so that all files can be removed.
2. Runtheuninstaler that isfound in the start menu or in the installation directory.

3. To complete the uninstallation, the search paths for FMI Toolbox in MATLAB must be manually removed.
Next timeyou start MATLAB, alist of missing path folder will appear inthe command window. InMATLAB,
open the Set Path... dialog in the File menu and click Save.

2.5.2. For Linux

FMI Toolbox does not provide an uninstaller for Linux. The following steps uninstalls the FMI Tool box.

Installation

1. Makesurethat MATLAB isclosed so that al files can be removed.
2. Removethefilesin the installation folder using the rm -rf command in the terminal window.

In this example the FMI Toolbox was installed in the $HOME directory. To remove the whole Modelon
folder, type:

> cd $HOVE
> rm-rf Model on

In order to keep the license file in the Model on/Common folder, do only remove the FMI Toolbox files with
the command:

> cd $HOVE
> rm-rf Model on/ FM _Tool box- X. X/

3. To complete the uninstallation, the search paths for FMI Toolbox in MATLAB must be manually removed.
Next timeyou start MATLAB, alist of missing path folder will appear inthe command window. InMATLAB,
open the Set Path... dialog in the File menu and click Save.

2.5.3. Unattended uninstallation

2.5.3.1. Windows

The Windows uninstaller can be run unattended from the command prompt. The uninstaller is found in the in-
stallation directory and must be run with the silent flag /S. Before the uninstaller is started, make sure that FMI
Toolbox is not used. The MATLAB path should be updated before the uninstaller is run. The following example
demonstrates how to uninstall FMI Toolbox:

> matlab -r "cd 'C\Program Fil es (x86)\ Mbdel on\ FM Tool box X. X' ;renobve; exit;"
> "C:\Program Fi |l es (x86)\ Model on\ FM Tool box X. X\ Uninstal | .exe" /S

MATLAB isfirst started with acommand line argument that runsinside MATLAB. Thisargument changes current
directory in MATLAB to where FMI Toolbox isinstalled and then runs the remove function. remove updates and
savesthe MATLAB path.

The uninstaller is then run and removes all the filesin the installation folder.

Note: Theinstaller must run with administrator privileges to eliminate the User Account Control dialog that oth-
erwise appear when theinstaller is started.

2.5.3.2. Linux

The unattended uninstallation procedure for FMI Toolbox on Linux is done in the following steps:

1. Removethe FMI Toolbox path from the MATLAB path.

10

Installation

2. Removethefilesin theinstallation folder using the rm -rf command.

The following example demonstrates how to uninstall FM| Toolbox:

> matlab -r "cd ' $HOME/ Model on/ FM _Tool box- X. X' ; renove; exi t; "
> rm-rf $HOVE/ Model on/ FM _Tool box- X. X/

MATLAB isfirst started with acommand line argument that runsinside MATLAB. Thisargument changes current
directory in MATLAB to where FMI Toolbox isinstalled and then runs the remove function. remove updates and
savesthe MATLAB path.

Thefiles are then removed.

2.6. Support

Support inquires are sent to support@model on.com.

11

Chapter 3. Simulation with Simulink

3.1. Introduction

An FMU is afile containing functions for evaluation of the equations of a model. An FMU can be generated by
an FMI-compliant tool such as Dymola. An FMU model can be simulated in Simulink using an FMU block. The
FMU block loads an FMU model and can then be configured from the FM U setup window. The FMU block can
have input and output ports that makes it possible to incorporate the FMU model with other Simulink blocks. In
the next section, the basic steps for simulating an FMU model in Simulink are demonstrated. The functionality is
intuitive but it can be helpful to go through two simple examples showing some combinations of the functionalities
and how they can be used.

Generated FMUs for the FMI for Model Exchange (1.0/2.0) and the FMI for Co-simulation (1.0/2.0) standards
are supported. The FMI Toolbox has two Simulink blocks, one for each FMU kind (Model Exchange and Co-
Simulation). The blocks are partially inlined S-functions and are then supported by Simulink Coder/Real-Time
workshop.

3.2. Getting started

Thistutorial gives awalk-through of the steps required to simulate an FMU using Simulink. In this walk-through,
the Model Exchange block loaded with FMI 1.0 FMUs is used but all the steps ooks the same for other FMUs
if nothing else is mentioned.
1. Create anew Simulink model.

Start the Simulink Library Browser from MATLAB using the command:

>> sjmul i nk

and create a new model by clicking the New Model buttom. A new Simulink model window will appear.

12

Simulation with Simulink

i

HE Sirmulink Library Browser EI@
< Erter searchterm v A5 "' = | =

Simulink

4 Simulink, - o
Commonly Used Blocks ﬁ
Continuous A ‘\ E
Disconkinuities I
Discrete Commonly Continuous Disconkinuities
Logic and Bit Operations Used Blocks
Lookup Tables =
Math Operations JF"“ al‘? = -
Model verification <=
Model-wide Ukl

eee E HHes Discreke Logic and Bik Lookup

Ports & Subsystems i Operations Tahles -

Figure 3.1 Create anew Simulink model.
Add the FMU block to the Simulink model.

Inthe Simulink Library Browser, locate and select the FMI block in the tree view on the | eft side. On the
right side, two FMU blocks will appear. One for each FMI kind, FMU CS and FMJ ME.

HE Simulink Library Browser EI@

<2 Entersearchterm v A3 v Bl v 9 | = (@
FMI

Signal Attributes -

Signal Routing

Sinks

FMICS FMUME
Sources

User-Defined Functions
+ Additional Math & Discrete
Control Svstem Toolbox
FMI
* HOL Coder —

m

Figure 3.2 Locate the FMU block in Simulink Library Browser.

13

Simulation with Simulink

Drag the model exchange block into the Simulink model window. If themodel to simulateisa Co-Simulation
FMU, the Co-Simulation block should be used instead.

¥l untitled * [E=5(EEE 3=
File Edit Miew Display Diagram Simulation Snalysis Code Tools Help
k- g =R YCH RONI REIOR R
=]

@

€3]

—*

|E| FMU ME

(i

Ready 1003 odel

Figure 3.3 Add the FMU block to the Simulink Model.
3. Load an FMU into the FMU block.

Double-click the FMU block to open the FM U setup window.

14

Simulation with Simulink

4 FMU ME o[E]

Parameters & startvalues | Qutputs | Maodel Data | Log | Advanced | Cu:uder|
Rezet All .

Load an FiU to configure

Figure 3.4 Load an FMU model in the FMU setup window.

Click the Load FM U button and locate your FMU file in the file browser that will appear. Click Open to
load the FMU model into the FMU block.

15

Simulation with Simulink

4| Pick an FMU

@U?| ;< exarmples » mel » win32 » Mechanics

Organize = MNew folder

o Marne

= Libraries
3 Docurnents
, Plusic
= Pictures

Subversion

B videos

|| Mechanics_Rotational frau

m

#d Homegroup

M Computer
£, Local Disk (C3) a5

File name: hechanics_Rotational.frnu

- |J-f| | Search Mechanics o

= ~ [0 @
Date rnodified Type Size

3402015 103 PM - FMAU File 58 KB

- FrAL-files (*.frnu) -

Figure 3.5 Load the FMU block by selecting an FMU model in the file browser.

If the FMU model has top level inputs or outputs they will show up as input and output ports on the block.
The example FMU used here, Mechani cs_Rot at i onal . f mu, has one input and three output ports. The FMU
fileisfound in the installation directory of FMI Toolbox under exanpl es\ mel\ <pl at f or m»\ Mechani cs\ .

Simulate the model.

To visualize the simulation results of the Mechani cs_Rot at i onal . f mu, aScope block and aMux block found
inthe Simulink Library Browser are added to the model. A si ne wave block isalso added as source to the
input port. If an FMU does not have any top level outputs, other variables can be added as output ports. See

section Output portsfor how to configure the output ports of the FMU block.

Simulate the FMU model by clicking the Start simulation button in the Simulink model window.

16

Simulation with Simulink

PL untitled * o[- B[]
File Edit “iew Display Diagram Sirmulation Analysis Code TJools Help
B - N> @ - & -
untitled
@
a i
= ™ "'I o[
| tau W
= \J/ —
Sine Wave Scope
[tics
(S|
FMUTests FIMUs Modelics_Mechanics_Fotstions] Examples_First
[T}
Ready 100%4 odel

Figure 3.6 Simulate the Mechanics Rotational FMU with oneinput signal and three output signals.

The simulation results for the variables wi, wi and wi are visualized in the Scope block. Double-click the
Scope block to make the Scope window appear.

17

Simulation with Simulink

4] Scope =3Il =
B0 | w i CNKREaSR s

Figure 3.7 Simulink Scope block visualize the results from the FMU above simulated from time O to 10.

3.3. FMU block properties

All configurations of the block described in this section are made within the FM U setup window. The FM U setup
window has six tabs, Parameters & Start Values, Outputs, Log, Model Data, Advanced and Coder. Block
configurations are made in the Parameters & Start Values, Outputs, L og, Advanced and Coder tabs whereas
general FMU information is contained in the M odel Data tab. All tabs have the same meaning and general layout
for Model Exchange (1.0/2.0) and Co-Simulation (1.0/2.0) FMUs but details may differ, al these differences will
be mentioned.

3.3.1. Set parameters and variables start values

IntheParameters& Start Valuestab, see Figure 3.8, all the parameter and variableinformationisfound. The start
values can also be set here. Only variablesand parameterswith the start attribute set arelisted. No inputs are shown.

18

Simulation with Simulink

®
®
®

P

E Coupledclutches

Pararmeters & Start Values | Qutputs | Model Data I Log | Advanced | Coder|

Category Wariahility Fixed
Bath ¥ Both * Both 4

) Flat viewe @) Tree view

]

Bﬁ coupledClutches

-~ P freqHz

P Tz 0.4
P T3

-6 11

=@ clutchl

»

m

- B mue_pos[l, 1] 1]

- P me_pos[l, 2] 0.5

=P ogen 1

- P fn max 20

- P w_small loooooooooo

% startForward false -
Deszcription: peak*mue_pos[1,2] = maximum value of mue for w_rel==0
Yalue 11 [Set Walue] [Reset Value]
hdir f el 1 ! 1.?9??@ Type Real

o

i
q

Load Fril...
Reset Al
Relosd PR

Structured Ports

Figure 3.8 Parameters & Start Valuestab shows all parameter and variable information.

To access information of a variable, select the variable of interest. Different fields are then populated with infor-
mation. The descriptions of the different fields are found in the table below.

@ Description

Description string of the variable.

@ Vaue

Start value of variable or parameter. If trying to update
thevaluewith adifferent datatype, theupdateisignored.

G MinMax

Minimum value of variable (vaue 5 min). Maximum
value of variable (value < max).

@ Type

Real/Integer/Boolean

19

Simulation with Simulink

The variable icons are described in the tables below.

Table 3.1 Variableiconsfor FMI 1.0 FMUs.

BMBoolean 7 Minteger | MReal

Thecolorsof the nodesinthelistsrepresent the different
data types, Boolean/Integer/Real.

P [P [P Parameters

A parameter ismarked with a P. The value of the param-
eter does not change after initialization.

v MV Variables

A variable is marked with a V. A variable is either a
continuous or discrete variable. A discrete variable on-
ly changes during initialization and at event instants. A
continuous variable has no restrictions on val ue changes.

C €T Constants

A constant is marked with a C. The value is fixed and
does not change.

a2 Fixed initial value
B nitial guessvalue

The shade of theicons indicates that the variable has ei-
ther a Fixed initial valug(light icon) or a Initial guess
value(dark icon). A Fixed initial value has this value
after the model hasbeeninitialized. A Initial guessval-
ue may has been changed.

Table 3.2 Variableicons for FMI 2.0 FMUs.

I WBoolean 7 M Minteger | 1M MRed

The colorsof the nodesin thelistsrepresent the different
data types, Boolean/Integer/Real.

P [P P Parameters

A parameter is marked with P. The value of the param-
eter does not change during initialization.

BB EP BB Calculated Parameters A calculated parameter is marked with cP. The value of
the parameter does not change after initialization.
L L Loca A locdl variable is marked with L. A local variable, its

value should not be used outside of the FMU.

L PL PL PExactinitial value
INERINERIMER G uessed initial value
INEENNEENNERC ol culated initial value

The shade of the icons indicates that the variable has
either an Exact initial value(light icon), Guessed ini-
tial value(slightly darker icon) or a Calculated initial
value(darkest icon). An Exact initial value hasthisval-
ue after the model has been initialized. A Guessed ini-
tial valuemay have been changed. A Calculated initial
value cannot be set and is not showed in this tab, only
in the Output tab, it is presented here for completion .

To set astart value, select the variable in the list and change the value in the value field next to Value. Press Enter
or the Set value button to set the value. A asterix(*) is added to the variable namein thelist if the valueis different

20

Simulation with Simulink

from the default. The valuethat is set can be an expression likesi n(x) wherex isavariablein the base workspace.
These expressions are evaluated just before the simulation starts.

To reset the value of avariable, select the variable in the list and click Reset and the default value will be set.

Toreset all start values to the default, click the Reset All Values button.

3.3.2. Input ports

Theinput ports of the block are set according to thetop level input variablesin the FMU model. These are set when
the model isloaded and can not be changed. Theinput ports are scalar and the datatypeis set to the corresponding
type of thevariable (integer, real, boolean). The name of theinput port onthe block is set to the name of the variable.

3.3.3. Output ports

The output ports of the block are by default set according to the top level outputs of the FMU model and is marked
with bold text. These can be both scalar or vector output ports. In the FMU setup window, Output tab, see
Figure 3.9, the output ports of the FMU block may be configured.

(4] Coupledclutches EI@
Pararneters & Start \-"alues| Outputs | Model Data | Log | Advanced | Cuderl

I Flat views (@ Tree view ’ hlove up][ave Dovwn]

] i~ Structured Parts
Elﬁ coupledClutches /
P fregHz »1 coupledClutches. J1.7
[P T2 1 coupladClutches. Ji.w
P T3 £ I coupledtlutches. T1. @
I 2w
-l flange . a | | | > w2
-6 flange b | | > w3
----- P Sl !
""" @ srateSelect
----- W phi
BE derphi)
..... W
-
-l a Original name:
B torgue - Direct Feedthrough

Figure 3.9 Outputs tab in the FMU setup window with 1 vector port and 4 scalar ports.

21

Simulation with Simulink

Inthelist to the left are al the variables that can be added as output ports on the FMU block. In thelist to the right
are al the output portsthat are currently set. Thelist to the right contains the variables that are selected as outputs
of the FMU block. The corresponding FMU block is shown in the Figure 3.10.

'PE CoupledClutches * EI@
Eile Edit Miew Display Diagrarm Simulation Analysis Code TJools Help
] Hi - o — “a
5 - B O P = @0 -
CoupledClutches
®
a wectar_autpart
El wl [
= wiz [
w3 b
P wi
[Coupledclutches
Ready 100%: odedl

Figure 3.10 Output ports on the FMU block with the output configuration from the Figure above.

Thenodesinthelist to theright hasahierarchy with two levels. Thefirst level hasan icon with aright arrow > and
represents a port that is seen on the FMU block. If aport has children, they haveablancicon' " (level two-nodes).
These represent the variables that are contained in that output port. We call a port containing several outputs a
vector port and a port with no children ascalar port. All children in avector port must be of the same data type.

Ports are added and removed using the Add >>, Add Vector>>... and << Remove buttons. These buttons are
sensitive to which nodes that are selected in the two lists. For exampleiif trying to make anillegal add, the button
will get disabled, grayed.

To add avariable as an output port, select the variable in the left list and then select aport in theright list to insert
the port after. Click the Add >> button to add the port. It is possible to add multiple scalar ports simultaneously
by selecting multiple variables in the left list.

To create a vector output, select multiple variables in the left list. All variables must be of the same data type.
Select an existing port in the right list after which the new port will be inserted. Then click the Add Vector >>...

22

Simulation with Simulink

button and aiinput dialog box will appear that asks the user to enter a name of the port. Default port nameis set to
the name of the first variable that was selected. Press OK to add the new port.

rT Paort nameEl [=] @ﬂ

Enter a port name

coupledClutches . J1)

| (034 | | Cancel |

Figure 3.11 Input dialog box asks the user to enter the name of the vector port that will be added.

To add a variable to an already existing output vector port, select a child node in the vector port after which the
new variable should be inserted and click the Add >> button.

To rename a port, select the port to renamein the list to the right. The port name will appear in the Rename field
where the name can be changed, and then click the Set name button. Renaming a child in a vector output has no
visual effect on the FMU block.

To remove a port, select the port to remove and click the << Remave button. Y ou can also remove a single child
variable in avector output.

To change the position of a port on the FMU block, select the port you want to move in the list to the right and
use the M ove Up and M ove Down buttons.

To reset the output ports to default, use the Set default outputs button.

23

Simulation with Simulink

3.3.3.1. Direct Feedthrough

'Pﬁ DirectFeedthrough ™ El@
File Edit Miew Display Diagram Simulation f&nalysis Code Tools Help
([= el 223

= - LR SON SO REORd R
| DirectFeedthrough |
®
&)

'ﬁ‘ | ul
E3 Vi

Sine Wave
_ , [
oz Scope

Directfesdthroug hs um

@i
3
Ready 100% oded

Figure 3.12 System with direct feedthrough.

Direct feedthrough in a Simulink block means that the output port depends directly on the input port. To solve an
algebraic loop, the input port must be configured for direct feedthrough. All input portsthat are listed in the FMU
are set with direct feedthrough. The direct feedthrough concept corresponds to the direct dependency in the FMI
documentation. This means that even though all input ports to the FMU block in Simulink can be connected in an
algebraic loop, it may not be supported by the FMU. Due to the definition of the direct dependency, the output
portsin an FMU, lists the input ports that can be used in an algebraic loop.

The Output tab in the FMU setup window for the system above, is seen in Figure 3.13.

24

Simulation with Simulink

£

' =

E Directfeedthroughsum

Pararmeters & StartVaIues| Cutputs | Model Data | Log | Advanced | Cu:uder| Load FrL..
v

[hove up][hdanee Dy] Reload FhU...

) Flat viewe @) Tree view

1l

ﬁ Structured Parts

. ul Add Scalar== BN
Ml
. 7 Add Vector==

Reset &Il Outputs. |

Original name: ¥

[Direct Feedthrough]

Figure 3.13 The output variable y sets some input with direct feedthrough.

An output port that depends directly on an input port has the icon 2 with double arrows. This indicates that the
output port may be used in an algebraic loop. When an output port with direct feedthrough is selected, the Direct
Feedthrough button is enabled. This button opens a dialog box, listing the input ports that may be used in an

algebraic loop and that the output port depends directly on.

25

Simulation with Simulink

[« == e
Ctput port:
i

L2

-

Cloze

Figure 3.14 Dialog for the selected output port y that lists the input ports ul and u2 it depends directly on.

3.3.4. FMU model information

In the Model Data tab general information of the FMU model is found, see Figure 3.15 and Figure 3.16. The
information is extracted from the FMU model and can not be changed.

26

Simulation with Simulink

I "

4 fullRobot =n EoR==

Pararneters & Start Values | Qutputs | Model Data | Log | Advanced | Coder

| LosdfMU.. |

FMU path C:=serstemil_0S0Documerts \FMIToolboxsrcitestimportmocel | Reset Al |
DLL path C:Wserslemi_DS0bppDatallocalTempiimutpSbddd0s9_bfdc . | ———
Model name fullRobaot | Reload FMU.. |
Description & degree of freedom robot with path planning, controllers, B
version | Structured Partz |

FMI version 1.0
FMI Kind Model Exchange
Author
Generation tool Dymola Yerzion 2015 FDO (B4-hit), 2014-12-15
Generation date 2015-01-07T13:33:00Z
GUID {dfa2f31 4-c01 f-4a98-af10-4dedaS4d2b00)
Continuous states 36
Event indicators 935
Real variables G316
Integer variables 302
Boolean variables 274
String variables 0O
Enumeration variables 139
Top level inputs 0O
Top level outputs G
Parameters 1393
Discrete variables 123
Continuous variables 3552

Figure 3.15 The Model Datatab for an FMI 1.0 FMU.

27

Simulation with Simulink

I "

4 fullRobot e[S

Pararneters & Start Values | Qutputs| Model Data | Log | Advanced | Coder [LosdFmu.. |
FMU path CWsersiemil_0S0Documents'FITookoxsrctestimportmadel | Reset All |

DLL path Csersiemil_0S0A&ppDatailocahTempfmutp9s5286add4_589d_ | ——

Model name fullRobot | ReloadFMU.. |
Description £ degree of freedom robat with path planning, contrallers, N
FMIversion 20 | Structured Ports |

FMI Kind Model Exchange
Generation tool Dymola Yersion 2015 FDOY (B4-bit), 2014-11-04
Version
Generation date 2014-11-11T15:00:13Z
GUID {5z197250-c1e1-421e-9e46-677ed5057 6ok }
Author
License
Copyright
Continuous states 36
Event indicators 95
Real variables 6247
Integer variables 202
Boolean variables 274
String variables 0
Enumeration variables 19
Top level inputs O
Top level outputs &
Local variables 5230
Parameters 5465
Calculated Parameters 0
Constant variables 1543
Fixed variables E75
Tunable variables 715
Digcrete variables 123
Continuous variables 3453

Figure 3.16 The Model Datatab for an FMI 2.0 FMU.

3.3.5. Log

In the L og tab the user can configure the logging behavior of the block. In Figure 3.17 the L og tab is shown.

28

Simulation with Simulink

4| Coupledclutches E@
Parameters & Start Values | Qutputs | hModel Data | Log | Advanced | Coder Laad FrLL_.

Rezutt file Reset All..
Wirite simulation result to file —_
Feload FMU...
Loogger Structured Ports

efror + Zet general log level (parse XL, load DLL)

Figure 3.17 The block's logging can be configured from the Log tab.

3.3.5.1. Create result file

A Dymola formated result file in textual format is created if the check box Write simulation result to file is
checked. Please note that the Write simulation result to file option may affect the simulation speed for large
models. Thisfile contains the result datafrom all the variables, parameters and constants.

The result file is created in the current directory and is named to the FMUs model name with the extension
_results.txt.

The result file can be loaded into the MATLAB workspace using the | oadDSResul t script. To extract the result
dataof avariabletheget DSvari abl e functionisused. A short exampleisgiven here on how to usethese functions.

Assume that an FMU named Coupl edCl ut ches with the variable coupl edd ut ches. J2. a has successfully been
simulated. To plot the result of this variable, load the result file in the MATLAB workspace.

>> ResDat a=|l oadDSResul t (* Coupl edCl ut ches_results.txt');
Extract the simulation result of the variable coupl edd ut ches. J2. a and plot.

>> [T, Y] =get DSVar i abl e(ResDat a, ' coupl edCl ut ches. J1.wW);
>> plot(T,Y);

29

Simulation with Simulink

B Foure =TT
Eile Edit Miew Insert Tools Desktop Window Help L

D& K AaAO8 (€ 08 80

Figure 3.18 Plotted simulation results loaded from aresult file that was generated from a Simulink simulation.

3.3.5.2. Logger

The log messages from the FMU are printed to the Conmand W ndow. In the drop down menu, alist of log levels
are listed that can be used to filter the messages. The selected log level prints the selected log level messages and
all other messages that has a higher precedence in thelist, i.eif verboseis selected, all messages are printed since
it has lowest precedence. Thelog levels listed in precedence order starting with the lowest.

1. verbose
2. info
3. warning

4. error (default)
5. fatal

6. nothing

3.3.6. Advanced

In the Advanced tab the user can change some of the block configurations regarding the block behavior and
simulation settings. In thistab different options are available for the different blocks (FMU ME and FMU CS) and the

30

Simulation with Simulink

different FMI versions (1.0 and 2.0). The Tolerances panel is always available for the FMU Ve block and for FMI
2.0FMUsinthe FMJ cs block. The Sample times panel is aways available in the FMU s block. In Figure 3.19
the Co-Simulation block's advanced tab is shown with an FMI 2.0 FMU |oaded.

-

e

4| CoupledClutches E@

Pararmeters & Start Values | Qutputs | Model Data | Log | Advanced | Coder Load FML._

lzon ———————
Reset All...
V| U=e icon in FMU if there is any Set block icon... \—/
Relosd FhU...
Tolerances —_—
Structured Potts

Use tolerance controlled Fhill

U=e Simulink's relative tolerance

Relative tolerance 0.001
Sample times

Sampling irterval 0.005

Sampling offset]
Reload FrL

V| Add newy output parts when the model is reloaded

| Update block name automatically

Find FrU file on Model load
@ Relative path to Model directory

Absolute path

File name search

Figure 3.19 The block behavior can be configured from the advanced tab. Thisis a figure of the FMU CS 2.0
advanced tab.

3.3.6.1. Block icon and mask

The FMU block”s mask is set by a callback function. This function overwritesthe Dr awi ng commands in the Mask
Edi t or every time the block has been changed. To modify the block icon, click the Set block icon button and
choose your icon image in the file browser that opens. By the default, the check box Useicon in FMU if thereis
any is checked and uses the nodel . png filein the FMU file. If there is no such file, the block is set to be white.

31

Simulation with Simulink

3.3.6.2. Tolerances (Not for FMU CS 1.0)

An FMU model may solve equations internally up to a certain accuracy based on some tolerances. Before the
simulation starts, a relative tolerance can be set by the simulation environment to the FMU model. There is also
an indicator flag for whether or not the FMU model should use this tolerance. If the FMU model should use the
relative tolerance set by the simulation environment, then check the check box Use tolerance controlled FM U.
By default thisit is unchecked. To use Simulink'srelative tolerance, check the Use Simulink”srelative tolerance.
Note, the relative tolerance is only available when variable step solvers are used. If the Use Simulink’srelative
tolerance is unchecked, arelative tolerance can be typed in the Relative tolerance field below.

Tolerances
| Usze tolerance controlled FMLU

W | Use Simulink's relative tolerance

Relative tolerance 0.00

Figure 3.20 The Tolerance panel in the Advanced tab for the model exchange block.

3.3.6.3. Sample times (FMU CS block only)

The Sampling interval isthe length of time steps used when simulating the FMU model. The Sampling offset is
the delay before the first time step is taken after the simulation started.

Sample times
Sampling irterwal 01
Sampling offset 0

Figure 3.21 The Sample times panel in the Advanced tab for the co-simulation block.
3.3.6.4. Reload FMU

When an FMU model is reloaded, new output ports that are added in the FMU model can be added last in the
FMU block. Thisis done if the Add new output ports when the model is reloaded option is checked. Default
is unchecked.

The block name is updated when an FMU model isloaded or reloaded. It is set to the model name. To disable this
automatic update, uncheck Update block name automatically.

3.3.6.5. Find FMU file on Model load

There are three different aternatives that can be configured for how the FMU file should be found when the
model (*.mdl) is opened.

32

Simulation with Simulink

1. Relative path to the Model directory.
2. Absolute path.
3. File name search.
This alternative searches for the FMU filein the following order:
i. Model(*.mdl) directory
ii. Current working directory
iii. MATLAB path

Default is that relative path is used.

3.3.7. Coder

The Coder tab isused configure propertiesfor the block that influence the code generation when the model is built
for a specific target with Simulink Coder.

4] Coupledclutches EI@
| Pararreters & Start Walues | Cutputs | Faodel Data | Log | Advanced| Coder ‘ Load FMU._.

Code generation options Reset &l

D Use shared librang (if awvailable)
Reload Fhil...

Structured Parts

Figure 3.22 The FMU setup window with the Coder tab selected.
Enable Use shared library to generate code that 1oads the shared library of the FMU.

When the target is an FMU, the block”s shared libraries will be contained in the generated FMUs resources. For
targets other than FMUs, aresource folder is created in the same directory as the target.

The rti1006.tlc target does only work with source code FMUs.

33

Simulation with Simulink

3.3.8. Scripting FMU block

The following functions are available for scripting with the FMU blocks. Use the help command in MATLAB to
get more information about the functions.

Table 3.3 Functions available for scripting with the FMU blocks.

Functions Short description

fmuGetl nputPortsSimulink Returns the input ports from an FMU block.

fmuGetM odel DataSimulink Returns model data.

fmuGetOptionSimulink Returns an FMU block option.

fmuGetOutputPortsSimulink Returns the output ports from an FMU block.

fmuGetVaueSimulink Returnsthe start value for avariable.

fmuL cadFM USimulink Loads an FMU block with an FMU file.

fmuRelcadFMUSimulink Reloads an FMU block.

fmuResetAllOutputPortsSimulink Resets all output ports to default.

fmuResetAll Simulink Resets all parameter and start values, and al output
ports.

fmuResetAllVauesSimulink Resets all parameter and start values.

fmuResetValueSimulink Resets one or multiple parameter and start values.

fmuSetOptionSimulink Setsan FMU block option.

fmuSetOutputPortsSimulink Sets the output ports for an FMU block.

fmuSetValueSimulink Sets a parameter or start value in an FMU block.

fmuStructuredPortsSimulink Uses the structured naming of the ports to make them
buses.

fmuRemoveStructuredPortsSimulink Removes the bus structure added by fmuStructured-
PortsSimulink.

Hereisan example of ascript running aVan der Pol oscillator model with different start valuesx1_0 andx2_0. The
output of the Simulink model vDP. mdl are the variables x1 and x2. The phase plane for the Van der Pol oscillator
isshown in Figure 3.23.

nodel _nane " VDP. mdl ' ; %Si mul i nk nodel

bl ock_name ' VDP/ VDFP' ; %-MJ bl ock in the Sinmulink nodel
si nopt = sinset('solver','odel5s'); %ol ver used

final _time=20;

N_poi nt s=11;

x1_0=l i nspace(-3, 3, N_points);

Simulation with Simulink

x2_0=zeros(si ze(x1_0));

%5i mul i nk nobdel nust be open to set paraneters and start val ues
open_syst en{ nbdel _nane) ;

for k=1:N_points
%Set initial conditions in nodel
f muSet Val ueSi nul i nk(bl ock_nane, ' x1_0', x1_0(k));
f muSet Val ueSi mul i nk(bl ock_nare, ' x2_0', x2_0(Kk));
%si mul at e
[T, Y] =si m(nodel _nane, [0, final _tine], sinopt);
%l ot sinulation results
plot (Y(:,1),Y(:,2));
hol d on

end

x| abel (' x1');

yl abel (' x2");

1 i [E=EE

Eile Edit Miew Insert Tools Desktop Window Help ‘NI

DedsEs RAads € 08 50

a5

¥2
=

Figure 3.23 Phase plane for the Van der Pol oscillator that was generated from the script above.

3.3.9. Load FMU model

To load an FMU model into the FMU block, open the FMU setup window by double clicking the FMU block.
Click the Load FMU button in the sidebar to the right and afile browser will appear. Locate and select the FMU
file to load the FMU block with and click Open. If a Simulink model with an FMU block is opened but the path
to the FMU file is changed, a file browser will appear that prompts you to relocate the FMU file. The FMU file
will then be rel oaded.

35

Simulation with Simulink

3.3.10. Reset an FMU model

Toreset an FMU model, use the Reset All button found in the Setup tab. This operation resets all valuesto default
and sets the output ports to default.

3.3.11. Reload FMU model

If an FMU file has been changed it can be reloaded. To reload an FM U, click the Reload FM U button. Start values
and ports are updated in the new FMU.

This feature is useful if an FMU that has been imported into Simulink has been changed. In this case, the reload

feature attempts to keep the configuration of the FMU block even though the updated FMU may have different
variables than the original FMU.

3.3.12. Add Structured Ports to the FMU Block

If an FMU Block has inputs or outpus that have a structured naming (model.bus.signal) then this can be used to
create a structure of buses based on this naming. To do this click the Structured Ports button.

For a practical example see the Configure ports using structural naming example in Section 3.5.3.

3.3.13. Using the filter functions

To ease the use of the variable lists, different filter functionsis at hand to search in the lists. A summary of how
they work and should be used is described below.

Table 3.4 Filtering for FM1 1.0 variables

[ﬁ- [ﬁ Filter variables by name. Use the Clear button to reset
Fitter Clear
the filter function.

Categary Filter on Category. There are two defined categories,

Both -] Variables and Parameters. Use the drop down list to

- ; select the category to filter. Choose between Parame-

Variables ters, Variables or Both. Variables can be Continuous

Parameters or Discrete which can be filtered using the Variability
drop down list.

W ariability Filter on Variability. Thisfunction only apply to Vari-

Both -] ablesand is disabled for Parameters. A variable can be

=] either discrete or continuous.

Continuous

Discrete

36

Simulation with Simulink

Fixed Filter on fixed Variables. If Fixed initial valuesis se-
Bath -] lected, only variableswith fixed initial valuesare shown.
= ' If Initial guessvaluesisselected, only variableswithini-
Fixed initial valuss tial guess values are shown.

Initial guess values

Table 3.5 Filtering for FMI 2.0 variables

[Fiter |[Clear | Filter variables by name. Use the Clear button to reset
the filter function.

Causzality Filter on Causality. There are three defined categories,

- Parameters, Calculated parameters and Local variables.
Al | Use the drop down list to select the category to filter.
Choose between Parameters, Calculated parameters,

Parameters Local variablesor All.
Calculated Parameters

Local variables

Vatiahility Filter on Variability. There are five defined categories,

. Constant, Fixed, Tunable, Discrete and Continuous. Use
- M the drop down list to select the category to filter. Choose
between Constant, Fixed, Tunable, Discrete, Contin-

Constant
onEta uousor All.

Fixed
Tunakle
Dizcrete
Continuaus

Filter on Initial value type. If Exact initial values is
_ selected, only variables with Exact initial values are
All v shown. If Guessed initial values is selected, only vari-
ableswith initial value types Approx are shown.

Initial walue type

Exact initial values
Guessed initial values

3.4. FMU block and Simulink Coder

It is possible to use Simulink Coder with a Simulink model containing an FMU block loaded with a source code
FMU. Thismakesit possibleto accessthe capability of many Simulink Coder targetsfor configurations of Simulink
blocks and FMUs, for example building a Simulink model with an FMU to areal-time platform.

The FMU block is tested with the targets listed in Table 2.5 and FMUs from Dymolaversionslisted in Table 2.6.
However, other configurations are expected to work if:

37

Simulation with Simulink

1. TheFMI version of the source code FMU is 2.0

2. Thetargets compiler can compile C89/C90 (ANSI) and f ni t _portabl e_stdint.h
3. The source code FMU can be compiled with the targets compiler

FMI 1.0isonly supported for Dymola FMUs.

Check with tool vendors if their exported source code FMUs can be compiled with the compiler of the desired
Simulink Coder target. If there is any problem with the compilation of f i t _port abl e_st di nt . h it may be pos-
sible to extend it to work for your target/compiler. Y ou can open the filein MATLAB with the command

>> edit(fullfile(fmtool boxdir(), 'fmtool box', 'fruBlock', 'fmt_portable_stdint.h'))
where more information is given.

Note that Dymola FMUs from 2015 FDO1 and forward needs to be exported from Dymola using
Advanced. Al | owMul ti pl el nst ances=f al se if you your target platform is the dSPACE rti1006.tlc target. This
may be true for similar targets and the compilation error will then look like: error: thread-1ocal storage not
supported for this target.

Note that Dymola source FMUs from 2015 FDO1 and forward always are compiled with NO_FI LE defined. Thisis
because there is no guarantee that the target platform have afile system.

Note that building a model containing many FMUs may cause name conflicts when compiling the C code. This
might happen if it contains two 1.0 FMUs or two 2.0 FMUs with the same model identifier.

3.5. Examples

Two examples covering the basic functionalities of the FMU block are described in this section. The first example
demonstrates how to set start values of the FMU model in the GUI. The second example demonstrates how to
configure the output ports.

3.5.1. Changing start values and using the filter functions

This example shows how to change the start values of different variables in a robot model from the Modelica
Standard Library. To do this, the different filter functionswill be used. The FMU file used in this exampleisfound
in the installation directory of FMI Toolbox under / exanpl es/ me1/ <pl at f or m»/ Robot / and it is generated by
Dymola

The robot model is taken from the Modelica MultiBody Library and is a demonstration model of the Manutec 3d
robot. The robot model contains variables corresponding to the starting angle of some robot axis. These variables
are named st ar t Angl e. To find these variables, type st art Angl e in the field next to the Filter button and click
Filter. In Figure 3.24 we see the result after filtering.

38

Simulation with Simulink

i
i

4 FMUTests FMUs Robot3d_MultiBody

Pararneters & Start Values | Cutputs | hadel Data I Log | Sdvanced I Cu:uder| Lo FML...
Categary Wariahility Fized p—
et All...

Both * |Both * |Both .
: : : Relasd FrMU...
ructured Ports

@ Flat views () Tree view

*

fullRobhot. startdnglel -60

fullRobot. startingles

fullRobot. startdngled a0
fullRobot. startingled 1]
fullRobot. startinglel =110
fullRobot. starcingles u]

L e v I v i v I v I v

Description: Start angle of axizs 2

walle 20| deqg [Set Value] [Reszet Value]

Min e -1 7I7TE+306 F 1 TSTVE+S08 Type Real Resat &l Values

Figure 3.24 Result after filtering for "startAngle" in a Robot model.

To set a new start value, select the variable and type the new value in the Value: field. Then click the Set value
button.

To set the start value of avariable that is discrete and hasinitial guess values, filter for this so no other variables
and parameters are shown. To do that, select Variablesin the Category drop down list. All Parameterswill now
disappear from thelist. Select Discretein the Variability drop down list and then I nitial guessvaluesin the Fixed
drop down list.

The filtered results are shown in Figure 3.25 below. The icons of the nodes that are visual indicates that they are
variables due to the V, the dark color indicates they are initial guess values and the pinkish color that they are
Boolean values.

39

Simulation with Simulink

i

4 FMUTests FMUs Robot3d_MultiBody

Pararneters & Start Values | Cutputs | hadel Data I Log | Sdvanced I Cu:uder| Lo FML...
Categary Wariahility Fized p—
e

“ariables = Discrete * Intial que... =

- . - Reload FrU..

Filter Clear
e —

@ Flat views () Tree view
]

. fullRobot.axisl.gear.bearingFriction. locked false

i]

- fullRobot.axisz.gear.bearingFriction. locked false

- fullRobot.axisz3. gear.bearingFriction. locked false

. fullRobot.axisd.gear.bearingFriction. locked false

.fullRDth.a.‘-cisS.gear.hearingFrictiDn.ll:nc:ked falsze
-l fullRobor, axis6. gear.bearingFriction, locked falze

Description:

Walle nia Zet Value Reszet Value

Mlir J Mz i Type Reset Al Values

Figure 3.25 Filtering result for: Variables + Discrete + Initial guess values.

3.5.2. Configure outputs

This example shows how to change the output ports of avehicle model. We will start by removing and renaming
output ports and then add a new port, a vector port.

The output configuration we start with is seen in Figure 3.26 below. These are the top level output variables that
are set when the model is loaded.

40

Simulation with Simulink

P

E Controlled 24D, ModelExport.AcceleratingWhile CormeringMIL E\@
Pararneters & Start '\u"alues| Outputs | Fodel Data | Log | Adwvanced | Cu:uder| Load FMUL_
") Flat viewe @ Tree view [Move up][Miove Doven] Feload EMU.
W il W Structured Ports
B aggregateMass Add Scalar== > VDL _enyg trg
(-8 wehicleFrameOrientation =12 VDL eny spd
-8 atuwosphere i -~ VDL whl spdl
-8 ground > vpL wm_spaz
-8 world -3 ulX]

----- P animation_center[l] - B3 r 0[X]

----- P animation center[Z]

----- P animation center[3]

----- P zoom

G-B wehicle

E-f GlobalScope

G-B wehicle &

F-B GlobalScope

F-Bd wehicle

B GlobalZcope

-8l wehicle Reset All Outputs...

-8 driver Original name: YDL_eng_trg

..... il DRV_acc_poz - Direct Feecthroudgh
AFE T SO 1 £

Figure 3.26 The output configuration of the vehicle model we start with.

In order to rename the output port u[X] , select the port in theright list. The field next to the Set name button will
then be populated with the node’s name, u[X] . Type anew name, u[1] ,u[3], in the field and click the Set name
button. The new nameisimmediately set and it can be seen in Figure 3.27 below.

41

Simulation with Simulink

P

E Controlled 24D, ModelExport.AcceleratingWhile CormeringMIL

Pararneters & Star‘t\u"alues| Outputs | Fodel Data | Log | Adwvanced | Cu:uder|

") Flat viewe @ Tree view

g -
- g aggregateMass

- vehicleFrameOrientation
- atmosphere

- ground

B world
animation_center[l]

m

animation_center[Z]
animation_center[3]
Zool

-6 vehicle

i GlobalScope

-G vehicle

i@ GlobalScope

B wehicle

J-8 GlobalScope

B wehicle

- driver

""" % DEV_acc_pos

ey OO sy OO s OO s OO s RN s O s O o |

Add Scalar==
Add Vectors=

Reset Al Outputs...

AL T 1 £

[E=|EoH ==

u[]u2] [Set name |

| Resetal. |

[Move up][Mowe Dosen]

Reload FML...

> VDL _eny trg
> VDL eny spd
=2 VDL whl spdl

- 0[]

Original name:

Direct Feedthrough

Structured Parts

Figure 3.27 The name of the top most port was changed from u[X] to u[1],u[3].

In the next step the child variable u[2] will be removed from the vector output port u[1] ,u[3] that just had its
name changed. The vector portr_0[X] will also get removed. Thisisdonein two steps. First, select the child node
u[2] inthe vector port v 1], u[3] and click the << Remove button. Secondly, select the other node, r _0[x] and
click the << Remove button. The result is seen in Figure 3.28 below.

42

Simulation with Simulink

ﬁ - ﬁ Structured Potts

o ControllediD ModelExport AcceleratingWhileCormeringhIL == R 1
Parameters & Start alues| OUtputs | Madel Data | Log | Advanced | Coder
O Flat view (@ Tree view | Maveup || Move Down |
| strustured ports |

- aggregateMass Add Scalar== - VDL _eng trg

{-&f wehicleFrameOrientation =2 VDL _eng_spd

[

[i

(-8 atmosphere > VDL whl_spdl
E E........E H

@ ground -3 VDL_whl_spd2
0@ world =3 ull],u[z]

----- P animation center[l] c > uli]

----- P animation center[2] | ulij

----- P animation_center[3]

----- P zoom

- vehicle

i@ GlobalScope

- vehicle

i@ GlobalScope

- vehicle

i@ GlobalScope

E:I-"ﬁ wehicle Reset All Outputs...

-8 driver Criginal name;

""" % DRV_acc_pos it Direct Feedthraucgh
IR - =

Figure 3.28 Output port configuration after the variable u[2] and the whole vector port r_0[X] have been removed.

Now add a vector port consisting of the vector variablesvehi cl eAccel er ati on. y. Filtering for this name results
in the tree variablesy[1], y[2] and y[3] visualized in the left list, seen in Figure 3.29. Select these variables by
Ctrl+mouse click all of them. In the list to the right, select the port it should be added to. The port u[1], u[3] is
selected in theright list here.

Now click the Add vector >>... button. A input dialog box appear where port name y[X] is set. The final result
of how the block output port configuration looks like in the FMU setup window and on the FMU block is seenin
the two figures below, Figure 3.29 and Figure 3.30.

43

Simulation with Simulink

P

E Controlled 24D, ModelExport.AcceleratingWhile CormeringMIL

| Pararneters & Star‘t\u"alues| Outputs | Fodel Data | Log | Adwvanced | Cu:uder|

vehicledcceleration y

") Flat viewe @ Tree view

]
Elﬁ driwver
E\‘ﬁ perception

Add Scalar==
Add Vectors=

i

[=]-a]

ot
[Mave up][hove Doven]

]
> VDL _eny trg
[VDL enyg spd
- VDL whl spdl
i3 VDL whl_spd2
B Fur1],ulz]
SR e
driver. perception. vehic]

> driver. perception. rehic]

“[driver. perception. vehicl

Reset &ll Quiputs... ||, »

Original name:

Direct Feedthrough

Figure 3.29 Fina output port configuration of the vehicle FMU mode.

Simulation with Simulink

P2 BWDControllerFMIT_MIL * o &]
File Edit Miew Display Diagram Simulation &Analysis Code Tools Help
]| = o Pid
rz - § il == R e (D v e v
| AWDControllerFMIT_MIL
@
{c) 2013, Modelon AB
Gl I Bl
El VDL_eng_trq [
— NWORY_ace_pos WDL_eng_spd [
VDL _whl_spd1 [
VIL_whi_spd2 ¢
= MWLSC_clamp_force a1 uf2] B
wlx] g L]
== [£
[‘Controlled4W 0. ModelBxport. Acceler stingW hileC orneringfliL Soope
]
Ready 100% odeds

Figure 3.30 FMU block with the final output port configuration.

3.5.3. Configure ports using structural naming

This example show how the Structured Ports feature can be used. We will start by adding some new outputs to
the CoupledClutches example and then take advantage of the new ports structural naming.

Open the Coupledclutches model and go to the Output tab. Mark the variables coupledClutches.J1.J and
coupledClutches.J1.phi and add them as outputs by clicking the Add Scalar >> button, seefigure Figure 3.31. The
FMU blocks port configuration should now be the same as seen in figure Figure 3.32.

45

Simulation with Simulink

P

E Coupledclutches

) Flat wiewe (@ Tree view

&
Bﬁ coupledClutches
- B freqHsz
=i g1

ﬁ flandge_a

|3

m

- to rque
B8 clutchl

| Parammeters & Start ‘u’alues| Outputs | Fodel Data | Log | Advanced | Cuder|

Add Scalar==
Add Vectar==

[Mowe g][Mowve Dowwn]

[=l-E]

Lasd FhU...

i

Reszeat All...

Reload FhU...

]
S
> w2
(I

Reszet All Outputs...

Qriginal narme:

Direct Feedthrough

il

Structured Ports

Figure 3.31 coupledClutches.J1.J and coupledClutches.J1.phi marked to be added as outputs.

46

Simulation with Simulink

'Pi CoupledClutches * E@
Eile Edit Miew Display Diagram Simulation Analysis Code Tools Help
(i ah ik d
= ilj@' @ G ® > @.»@vwv
CoupledClutches
@
coupledClutehes. 1.0 |»
@,
El coupledClutches. 1. phi |»
—] [»
nz e
ni e
B e | »
(& Coupledchutches
h
Ready 100%: odedd

Figure 3.32 FMU block with additional outputs.

Now click the Structured Ports button, see figure Figure 3.33. This should have changed the FMU blocks port
configuration. To see what happened add a Bus Selector block and connect it to the new output coupledClutches
as displayed in figure Figure 3.34.

47

Simulation with Simulink

E Coupledclutches E\@
| Parameters & Start ‘u"alues| Outputs | hiodel Data | Log | Advanced | Coder|

) Flat views @) Tree view [Move up][Maove Dowen] Feload FML_

ﬁ i ﬁ Structured Ports
= coupledClutches Add Scalar== -3 coupledClutches. J1.7J
-~ B freqHz <» coupledClutches. T1l.phi
TP T2 E Add Vectars= 3wl
o o
SR) -]
H-@f flange a 3w
[+ gl flange_h
..... p J
----- ﬁ statelelect
""" W phi Rezet All Cutputs ..
Wl der (phi) —
Original name:
..... V W
. der () - Direct Feedthrough

Figure 3.33 The Structured Ports button highlighted.

48

Simulation with Simulink

*4 CoupledClutches * EI@
Eile Edit Miew Display Diagram Simulation Analysis Code Tools DSMPBLIE Help
]| = (el { i

tz - B -8 4 b (&) ¥ 10.0 » (D~ @ v
CoupledClutches
® |[*a|CoupledClutches » -
@
3 coupledClutches
= wl

wi [»

w3

wid [y

Coupledclutches

>
Ready 125%: odedd

Figure 3.34 FMU block with Structured Ports and a Bus Selector block.

Now double click the Bus Selector block and examine the 'Signals in the bus, it should look similar to
figure Figure 3.35. The structured names has been used to create a bus structure as output! Note that for
coupledClutches.J1.phi you can see that coupledClutches is the name of the port and J1 and phi are signal names
in the bus structure.

49

Simulation with Simulink

Function Block Parameters: Bus Selector @
BusSelactor
This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button o select the output signals.
The right listhox shows the selections, Use the Up, Down, or Remove button to rearder the selections. Check 'Output as
bus' to output a single bus signal.
Parameters
Filter by name @J Find Selected signals Up
Signals in the bus Select=> i signall Damm
. P77 signal2
Refresh Remave
J | Refresh |
phi
Cutput as bus
" [(o4] | Cancel | | Help Apply

Figure 3.35 The signalsin the Bus as shown in the Bus Selector GUI.

This feature can be used when inporting FMUs that have alot of inputs/outputs with an advanced structure. Note
that changes to the outputs, realoding FMUs and loading FMUs can only be done in the mode with regular ports.

3.5.4. Build target containing an FMU block

In this example, a Simulink model containing an FMU block, will be built for the FMU Co-Simulation 1.0 target.
Note that this example is not distributed in the FMI Toolbox example folder and that the FMU is a source code
FMU. For building targets containing an FMU that is not a source code FMU see Section 3.3.7.

1. The source code FMU that is used in this example is generated with Dymola 2014. The model can be seenin
the block diagram in Figure 3.36 . The model has one input signal and output signal where the output signal
isequa to theintegrated input signal.

50

Simulation with Simulink

Integrate-lntegrate - [Diagram] EI@
File Edit Simulation Plot Animation Commands Window Help Linear analysis = |5 *
FwHQE N /T OOCARZL-2-[{R|Z2 0 Z2- B-¢»=@FHE -~
Package Browser F X
Packages o
+ () User's Guide
+1 [gllElocks

+ CUmp\ExEIcu:ks
+ fdlstateGraph

+ Elech'\cal

; Magnetic

e

m

Mechanics
[JIFhuid
+ Media ut integrator

el €] » [x] >—> —Dw
Component Browser X /

Components

=] IIntegratE
i—-integramr
~Hul
Ey1

0

| Modeling | W Simulation

Figure 3.36 Block diagram view of the FMU model in Dymola.
2. Create anew Simulink model and add the FMU block for Co-Simulation to the model.

3. Load the FMU block with the Co-Simulation FMU. Make sure that the FMU contains the source code. See
Section 3.2 for more details.

4. Add an input port and an output port and connect the blocks.

51

Simulation with Simulink

W untited* = e
File Edit Wiew Simulation Format Tools Help
DEE&S X2 3 |1D.D |Norrna| ﬂ
In1 St
Integrate
Ready 100% oded5

Figure 3.37 Simulink model with the FMU loaded.
5. Configure the model for FMU Co-Simulation export target, see Chapter 5 for details.
6. Build the Simulink model target. A Co-Simulation FMU will now be created in the current directory.
7. Create anew Simulink model and import the newly created FMU.

8. Connect asine signal and a scope to the input and output port on the FMU block.

52

Simulation with Simulink

® unttlect oo)
File Edit Wiew Simulation Format Tools
DEE&S 2 |1D.D |Norrna| ﬂ
'ﬂt e In1 Ot I I:l
U L Ll
Sine Wave Scope
Integrate
Ready 100% oded5

Figure 3.38 The FMU generated from Simulink is loaded into a new model.

9. Simulate the model. The results from the scope is seen in Figure 3.39.

53

Simulation with Simulink

nScope EI@
SEPLL AEE B H 3

Figure 3.39 Simulation results of the integrated sine wave from the imported Co-Simulation FMU.

3.5.5. Build rti1006.tlc target containing an FMU block

In this example, a Simulink model containing an FMU block for Model Exchange, will be built and run on the
dSPACE’s DS1006 platform. Note that this exampleis not distributed in the FM1 Toolbox example folder and that
the FMU is a source code FMU. The example assumes that the appropriate dSPACE software isinstalled and that
the RTI Platform Support RTI11006 is activated.

1. The source code FMU that is used in this example is generated with Dymola 2014. The model can be seenin
the block diagram in Figure 3.40 . The model has one input signal and output signal where the output signal is
equal to the integrated input signal. Make sure that Dymola exports the model asan FMU for Model Exchange
1.0 and includes the source code for the model.

Simulation with Simulink

Integrate - Integrate - [Diagram] EI@

File Edit Simulation Plot Animation Commands Window Help Linear analysis = |5 *

BxHQA8 N /Y OOCARZL-2-[FA]Es 0 Z2- B-¢)=FAE -

Package Browser F X

Packages o
+ () User's Guide

+ [gBlocks
+ CUmp\ExEIcu:ks
+ [alstateGraph

+ Elech'\cal

m

o Media ut integrator

el €] » [x] >—> —Dw
Component Browser X /

k=1

Components

=] IIntegratE
i—-integramr
~Hul
Ey1

| Modeling | W Simulation

Figure 3.40 Block diagram view of the FMU model in Dymola.
2. Create anew Simulink model and add the FM U block for Model Exchange to the model.

3. Load the FMU block with the Model Exchange FMU. Make sure that the FMU contains the source code. See
Section 3.2 for more details.

4. Add an input port and an output port and connect the blocks.

55

Simulation with Simulink

4 integrator [F=1 EoR =X
File Edit View Display Diagram Simulation Analysis Code Tools DSMPBLIE Help
-8 EH-BEAOP 2 @ w o) | @ - -
Model Browser = integrator
integrator ® ||*a|integrator v
&)
Ed
=

Out1

Sine Wave

integrate

«
Ready 100% odel

Figure 3.41 Simulink model with the FMU loaded.

5. Configure the model for the rti1006.tlc target if it is not already done. In this example, the new Simulink model
isautomatically configured for the rti1006.tIc target when it was created.

6. Buildthe Simulink model. The Simulink model compiles and downl oads the executabl e to the dSPA CE DS1006
system.

7. The output signals from the FMU block can now be viewed from dSPACE’s ControlDesk® Next Generation,
see Figure 3.42.

56

Simulation with Simulink

Variable Array_2: Sine Wave/Amplitude

-1.797683134586232E+308..1. 79768313486232E+308 Converted Incr. +1/10

%) (©) Plotter_1: integrate/Qut1

-1.79769e+308 .. 1.79768e+308 Converted

Variable Value Unit
G] srevercamnce CENE
[F] Sine Wave/Frequency 30 > = 9
[F] Sine Wave/Phase] * %
[F]| | simState E - B0
g
E
-1
W | 7j00s
0.0 0.1 0.z 0.3 0.4 0.5 0.6 07 0.8 0.5 1.0
4 m e
MName Value Unit + Raster Platfo...
. integrate/Out1 0.802703 :E HostS... Platfo...

Figure 3.42 A Variable Array and a Plotter instrument displaying the parameter values and output signal in
dSPACE’s Control Desk Next Generation.

3.5.5.1. Set start values and parameters

In order to set a start value, one can use the script function or GUI, seeSection 3.3.1, and then rebuild the model
according to the above procedure Section 3.5.5. An additional approach to set a new start value is to change
the parameter from inside ControlDesk Next Generation and then restart the simulation. That can be achieved in

following steps:

1. Add the parameters to change start values for, to a Variable Array instrument in the ControlDesk Next Gen-

eration layout.

2. Add the simState parameter to the Variable Array. It can belocated in the main group of the variable descrip-
tion file. smState is a parameter to read or set the simulation state of the application. This variable can take
on the states STOP (0), PAUSE (1), or RUN (2).

3. Change the smState value to 0, to stop the ssimulation.

4. Change the start values of the parameters.

5. Change the smState value to 2, to start the simulation.

6. The FMU uses the new start values to instantiate and initialize the model.

57

Chapter 4. Simulation in MATLAB

4.1. Introduction

An FMU model can be loaded in to the MATLAB environment and be simulated using MATLAB s ODE solvers.
Start values and parameters can be set, and if the model has inputs, these can be set with user defined input data.
The output from the simulation can be configured by the user, such as variables and result files. FMI versions 1.0
and 2.0 for Model Exchange and Co-Simulation are supported.

4.2. A first example

An FMU model loaded in the MATLAB workspace is a class object. An FMU model class is created with the
I oadFMU function, or one of the specific model class constructors FMUMbdel MEL, FMUMbdel ME2, FMUMbdel CS1 or
FMUMbdel CS2. | oadFMJ automatically chooses the right constructor and loads and instantiates the model. When
using the constructors directly, the FMU has to be manually instantiated.

Table 4.1 Different FMU model object creators

FMU class constructor and factory functions FMU type

| oadFMU Will check the FMU and use the appropriate construc-
tor. Also callstheinstatiate method of the returned class
object.

FMUMbdel ME1 Model Exchange 1.0

FMUMbdel ME2 Model Exchange 2.0

FMUMbdel CS1 Co-Simulation 1.0

FMUVbdel CS2 Co-Simulation 2.0

The version independent way to load an FMU into MATLAB is:

>> fnu = | oadFMJ(' bounci ngBal | . fu') ;

Thevariablef mu isnow representing the FMU model. Themodel descriptionfileisparsed and all the FMI functions
are ready to be called.

Once loaded, the model can be simulated using the si mul at e function. Due to the differences between Model
Exchange and Co-Simulation models, the inputs to the function have dlightly different meanings. The minimal
set of arguments required is the time interval to be ssimulated, which for ME models can be specified either as an
interval [t Start, tEnd] or asavector of timepoints, [t_0, t_1, ..., t_end].Inthefirst casethe returned
result is sampled at each solver step, while in the second case the output will be sampled at the specified time
points. Co-Simulation models, on the other hand, require a set of communication points, defining the simulation
intervals for the model'sinternal solver. This means that the second notation is always used, and if only [t St art,

t End] issupplied, the start and end points will be the only samples returned.

58

Simulationin MATLAB

The most general call to si mul at es isthus

>> [tout, yout, ynanes] = fru.sinmulate([tStart : stepSize : tEnd])

For Co-Simulation models, si mul at e will call the internal solver of the model, while Model Exchange models
will be ssimulated using one of MATLAB's solvers (the default is odel5s).

The simulation can aso be controlled by options provided to si mul at e, €.9.:

>> fmu = | oadFMJ(' bounci ngBal | . frmu'); % s before

>> outdata.name = {'h','v'};

>> opts = odeset (' Rel Tol', 1e-6);

>> [tout, yout, ynane] = fmu.sinmulate([0,2.5], 'Qutput', outdata, 'Options', opts);
>> pl ot (tout, yout);

>> | egend(ynane) ;

Here, additional arguments for the outputs are specified in the out dat a struct. Specifically, the variable namesin
out dat a. narre decide which model variables are given as output in yout . For afull list of the options available,
see the function documentation in MATLAB.

In the above example abouncing ball model issimulated. The model simulates aball that is dropped from a height
and bounces onto the ground.

-5 - L - L
o] 0.5 1 15 2 25
Time
Figure4.1 Simulation result for the bouncingBall.fmu model. The blue curve corresponds to the height of the ball
and the red curve corresponds to the velocity of the ball.

Thefull call sequenceto load and simulate amodel includes loading, instantiating, initializing and simulating. For
ease of use, instantiation is handled by | oadFMU and initialization by si mul at e (unless the model is previously

59

Simulationin MATLAB

initialized). The extra calls can be used to achieve more fine-grained control over the model setup. For example,
assuming that the model isa 1.0 Model Exchange FMU, the previous example may be rewritten as:

>> fmu = FMUMbdel MEL(' bounci ngBal | . fnu');

>> fmu. fmInstantiateModel (); % different calls for 1.0/2.0 and ME/ CS
>> fnu.initialize(); % default initialization

>> fmu.simulate([0 3]);

4.3. Using the FMU model classes

This section describes in more detail how the FMU model classes work. The examples used for demonstration
apply to both the Model Exchange classes and the Co-Simulation classes.

4.3.1. Handle class

The FMU classes are derived from the handle class which means that variables are references (handles) to an
object instance rather than complete copies of the object. This makes FMU objects behave simliarly to figures
in MATLAB. A consequence of thisis that an object cannot be copied in the usual MATLAB manner, only the
reference to it. This is demonstrated in the example below, where f nu and f mu_copy refer to the same object,
causing changes to one to affect the other as well.

>> fmu = | oadFMJ(' bounci ngBal | . frmu') ;
>> fru.get('h')
ans =
1
>> fru_copy = fmu;
>> fmu_copy.set('h', 2)
>> fru.get('h')
ans =

2

The FMU model class handles the destruction of the model when all its references are cleared, e.g when cl ear
al | iscalled or when MATLAB terminates.
4.3.2. Calling functions

The FMU model class methods can be caled in two different ways. There is the one used in the examples
above, with the class instance before the function name separated with adot: <obj >. <f uncti on(...)>. Theother

60

Simulationin MATLAB

way to call a class function is to use the function name first, and the class instance as the first input argument:
<function(<obj>, ...)>.

>> fnu = | oadFMJ(' bounci ngBal | . fmu') ;
>> frmu.get('h') %Alternative calling convention 1.
ans =

1

>> get(frnu, "h') %A ternative calling convention 2.
ans =

The documentation of the functions uses calling convention 2, i.e the first input argument is the class instance,
in this case FMU:

>> hel p FMUMbdel ME1. get % or anot her FMJ cl ass
get returns the val ues of vari abl es
VALUES = get (FMJ, NAMES) gets VALUES for the variable NAMES. NAMES is a

One advantage of using the function call with dot notation is that auto completion can be used (if it is enabled in
the MATLAB preferences). By starting to type a class name or function and then press the <Tab> button, a list
of alternativesis displayed in atool tip. The up and down arrows on the keyboard can be used to select the right
function, and then press enter. Note, the tab completion may list functions that are not valid to use. Use only the
documented functions that are found in fmi_information for that class, see below.

finiInitialize

frwilInstantiatelModel

Fr frou.fmiln
Figure 4.2 Use the Tab button for auto completion.

4.3.3. Help

To get more information about the classes, the MATLAB hel p command can be used.

For each class, C assNane. f mi _i nf or mat i on lists al available functions, e.g for the FMUModelMEL class, the
following functions are listed:

>> hel p FMUVbdel MEL. f m _i nformati on
FM Model Exchange 1.0 information
FM for Mdel Exchange 1.0 specification
https://svn. nodel i ca. org/fm /branches/ public/specifications/vl. 0/FM _for_Mdel Exchange_v1. 0. pdf

61

Simulationin MATLAB

Hel p functions
FMUMbdel MEL
event Updat e
get Val ue

All FM functions are |listed here:
f m Conpl et edl nt egr at or St ep
f m Event Updat e

See also fm _status, event _info, |oadFMJ

To get help from a specific class function, the class name must be included before the function name and separated
witha.:

>> hel p FMUMbdel MEL. f m Get Ver si on
fm GetVersion returns the FM version for nodel exchange
VERSI ON = fm Get Versi on(FMJ) returns the VERSI ON of the
FMJ s inpl enented nodel exchange interface. FMJis an
fmu nodel, see FMUWbdel ME1. This MATLAB cl ass supports
only FM version 1.0 for nbdel exchange.

See also fm _information

4.4. Examples

The following three examples cover how some of the class functions can be used. Special attention is given to
the simulate function, describing how different input and output configurations are set up. The simulate function
works in the same manner for both Model Exchange and Co-Simulation if nothing else is mentioned.

The si nul at e function takes the time span to simulate and the class instance as mandatory input arguments. All
other arguments are optional and are set as name-value pairs:

[TOUT, YOUT, YNAME] = sinulate(FMJ, TSPAN, ' NAMEL', VALUEL, ...)

The properties that can be set and what values they have are described in more detail in the help documentation
in MATLAB.

4.4.1. Set start values and parameters

Setting start values to an FMU is done using FMU model class methods. set and get are two methods that in-
voke the low level FMI function for setting and getting values. This examples demonstrates how to run multiple

62

Simulationin MATLAB

simulations with different parameter values. The FMU is amodel of the Van der Pol oscillator, generated from a
Modelica compiler using the Modelica code below:

nodel VDP

/| State start val ues
paranmeter Real x1_0
parameter Real x2_0
// The states

Real x1(start x1 0);
Real x2(start x2_0);
/1 The control signal

0;
g

i nput Real u;

equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;

end VDP;

A pre-compiled FMU for Model Exchange 1.0 isincluded in the FMI Toolbox distribution. Using this FMU, the
following script does a parameter sweep for theinitia values of the states x1 and x2:

VDP_frmu_path = 'VDP.fmu'; %ath to the FMJ file.

%.o0ad the FMJ

fmu = FMUMbdel MEL(VDP_f nu_pat h) ;
%efine initial conditions

final _time = 20;

N _points = 11;

x1 0 = linspace(-3, 3, N_points);
x2_0 = zeros(size(x1_0));

out put .. name={"' x1', 'x2'};
for k = 1: N _points
%Set initial conditions in nodel
fru. fm | nstanti at eModel ;
fru. set (' x1_0", x1_0(k));
frmu. set (' x2_0', x2_0(k));
%Si mul at e
[tout, yout, ynane] = frmu.sinmulate([O0, final tine], 'Qutput', output);
%l ot simulation results
pl ot (yout (:,1), yout(:,2));
hol d on
end
x| abel (ynanme(1));
yl abel (ynane(2));

This script should generate a plot similar to the one below:

63

Simulationin MATLAB

25 1 1 1 T 1 1 1

1.8+

=
m
T

o
m
T

Figure 4.3 Phase plane for the Van der Pol oscillator.

4.4.2. Simulation with inputs

In thisexample, inputs are used in the simulation using both table dataand aMATLAB function handle. The FMU
model that issimulated isthe first example model in Mechanics.Rotational from the Modelica Standard Library. It
has one input variable, u1, and three outputs, wi, w2, w3. The model is simulated for 10 seconds and both methods
for generating an input signal are described here.

Create a class instance for the FMU model:
>> frmu = | oadFMJ(' Mechani cs_Rot ati onal . fmu');

The property name used to set an input signal is| nput . The value set for the I nput property is a cell array with
structs where each struct is representing an input signal. Such a struct must have two fields, one with the input
variable name and one with the signal data.

Simulationin MATLAB

The variable name is set in the struct field narme. The second field, containing the signal data, can have one of two
field names: vec or f cn. vec indicates the use of table data, and its use varies dightly between Model Exchange
and Co-Simulation models. For Model Exchange, the input is provided as an array with sample times in the first
column and signal valuesin the second:

>> inconf{1}.name = 'tau';
>>t = [0:0.1:10]";

>> data = sin(t);

>> uldata = [t', data'];
>> jinconf{1}.vec = uldata;

For Co-Simulation models, providing the sample timesis not necessary as these are determined by the communi-
cation points. Thus, only the signal values are provided in this case:

>> jnconf{1}.nane = 'tau’;
>>t = [1:0.1:10];
>> jnconf{1}.vec = sin(t);

The other way of providing input isto useaMATLAB function handle. Then, the struct field f cn is used instead:

>> jinconf{1}.nanme = 'tau';
>> jnconf{l}.fcn = @t)sin(t);

Aninput function should take asingleinput argument (theindependent variabl€) and return ascalar valueto be used
asthe current input sample. Since sampling is handled internally in the si mul at e function, there is no difference
in input between Model Exchange and Co-Simulation models.

In this example we choose the function handle to generate the input signal for u1 when simulating. The simulation
results for the default output variables wi, w2, w3, corresponding to angular velocities of the inertias in the model,
arevisualised in the plot below.

>> frmu_ne = | oadFMJ(' nel/ Mechani cs_Rotational . frmu');

>> fmu_cs = | oadFMJ' cs1/ Mechani cs_Rotational . fnu');

>> jnconf{1}.name = 'tau';

>> jnconf{l}.fcn = @t)sin(t);

>> [tinme_ne, yout_me, ynane_ne] = frnu_ne.sinmulate([0,10], 'Input', inconf);

>> [tine_cs, yout_cs, ynane_cs] = fmu_cs.sinulate(0:0.1:10, 'lInput', inconf);

>> subplot(1,2,1); plot(tinme_ne,yout_ne); title(' Model Exchange'); |egend(ynane_ne);
>> subplot(1,2,2); plot(tinme_cs,yout_cs); title('Co-simulation'); |egend(ynane_cs);

65

Simulationin MATLAB

e

Eile Edit Miew Insert Tools Desktop Window Help L

D& kAT 0IE =0
Model Exchange

Co-simulation

wi
w2 |
w3

\
Figure 4.4 Simulation results for angular velocities of inertias in the Mechanics model FMU.

4.4.3. Simulation with configured output

This example shows how the output from the simulation function can be configured. We use the CoupledClutches
model, found in the Modelica Standard Library, and simulate it for 10 seconds both as Model Exchange and Co-
Simulation. Theoutput is configured to exclude the default output variables, i.e., al top level output variablesinthe
FMU, and instead contain the variablescl ut ch3. f1 ange_a. phi and cl ut ch3. t au. The output is also configured
to create a Dymola-styled result file. After the simulation, the commands for loading and visualising the result
fromtheresult filein MATLAB are described and compared with the output result that is created inthe MATLAB
workspace.

The property name for configuring the output is cut put . The value is a struct with different fields. The different
fields are described below. In this example, we call the struct out conf .

To turn off the default output results, the outputs of the FMU model, the struct field t opl evel isset to false:
>> out conf.topl evel = fal se;

Add the names of the variables that should be included in the output by adding the namesin acell array. This cell
array is set to the struct field nane.

>> out conf.name = {' coupl edd utches. J4.a',"' coupl edd utches. J2.a'};

The last output configuration isto set thewr i t ef i | e field to true so that a Dymola-styled result fileis created.

66

Simulationin MATLAB

>> outconf.witefile = true;

Finally, simulate the model and plot the results:

>> fmu = | oadFMJ(' coupl edCl ut ches. fmu') ;

>> [tine, yout, ynane] = simulate(fmu, [0, 10], 'Qutput', outconf);

>> plot(tine,yout(:,1)); title(ynane(l));

Theresulting plot is seenin Figure 4.5.

B Figure 1 A =
File Edit View Insert Tools Desktop Window Help A

Ded& haadms|d 08| e

2-coupledClutches.J2.a
10 T T T

1S 4

6 4

Figure 4.5 Plot using the results created in the Matlab workspace for the J2.a variable.

The simulation also generates aresult file that iswritten to disk. Thisfile contains the results from all the variables
and parameters in the model. To load the same variable as above into the MATLAB workspace, the result file
must first be loaded:

>> resData = | oadDSResul t (' FMJTest s. FMJs. Coupl edCl ut ches_results.txt');
To retreive and plot the variable, use the get DSvar i abl e function:

>> [T, Y] = getDSVari abl e(resData, 'coupledC utches.J2.a');
>> plot(T, Y);

67

Simulationin MATLAB

Figure 1 / n|e(=]

Eile Edit Miew Insert Tools Desktop Window Help

D& K AaAO8 (€ 08 80

Jle

10

1S 4

6 4

Figure 4.6 Plot using the result from file. The same J2.avariable is plotted.

4.4.3.1. Using custom solver (Model Exchange only)

If the modd is instantiated with a model exchange class (FMUMbdel ME1 or FMUMbdel ME2), the simulate function
has the property Sol ver and Opt i ons. These are set to change the MATLAB solver and the options used by this
solver. The solver property value is a string with the name of the solver. The options value is created using the
odeset function.

In the example script below the default solver odel5sis replaced with ode23s. The solver options setsthe relative
tolerance to 1le-7 and the absolute tolerance to 1e-5.

>> fmu = | oadFMJ(' coupl edd ut ches. fmu');
>> odeopt = odeset('Rel Tol', 1e-7, 'AbsTol', 1le-5);
>> fmu.sinmulate([0, 10], 'Options', odeopt, 'Solver', 'ode23s');

4.5. Upgrading to FMI 2.0
4.5.1. Converting from FMI 1.0 to FMI 2.0

When upgrading from FMI 1.0 to FMI 2.0, changes to existing scripts will be necessary. This section is a quick
summary for reusing old scripts that are written for FMI1 1.0 FMUs.

Changes when upgrading are presented in Table 4.2. Note that whilethei ni ti al i ze method exists for all model
typesand versions, it takes different arguments depending on whether themodel isanME 1.0, CS1.0or a2.0 FMU.

68

Simulationin MATLAB

Another large changeisthe re-design of the high level functionsfor setting and getting valuesinthe FMU. The new
methods, set and get , gives better type check and can be used together with the Scal ar vari abl e(1/ 2) classes. It
is recommended to use these new methods, and set Val ue/ get Val ue in the FMI 2.0 interface will give warnings
about being deprecated.

Usage of the low-level FMI functions will have to be upgraded according to the Table 4.3. Accessing properties

of the variables are now handled through the Scal ar vVa

riabl e(1/2) classes, see Table4.4.

Table 4.2 Initidlization and convenience function conversion table

FMI 1.0

FMI 2.0

fmilnitialize

initialize. Initialization can also be performed auto-
matically by the si nul at e function.

fmilnitializeSl ave

initialize. Initialization can also be performed auto-
matically by the si nul at e function.

f m Event Updat e

event Updat e

get Val ue get (get Val ue exists but is deprecated)
set Val ue set (set Val ue exists but is deprecated)
model Dat a Removed, use get methods for the different attributes.

Variable counts should be obtained by counting ele-
mentsin variable lists.

Table 4.3 Low-level FMI functions conversion table

FMI 1.0

FMI 2.0

fm FreeSl avel nst ance

f m Freel nstance

f m FreeModel | nst ance

f m Freel nst ance

f m Get Model TypesPl atform

fm Get TypesPl at form

f m Get Nom nal Conti nuousSt at es

f m Get Nom nal sO Conti nuousSt at es

f m Get St at eVal ueRef erences

fmu. get St at es() . val ueRef er ence

fm | nstantiateSl ave

fmlnstantiate (consider usingl oadFMJ asit alsoin-
stantiates the FMU)

fm | nstanti at eModel

fmlnstantiate (consider usingl oadFMJ asit alsoin-
stantiates the FMU)

f m Reset Sl ave

f m Reset

Table 4.4 Variable property functions conversion table

FMI 1.0

FMI 2.0

get Vari abl eAl i as

get Scal ar Vari abl e(nane) . al i asSet

69

Simulationin MATLAB

FMI 1.0

FMI 2.0

get Vari abl eAl i asBase

get Scal ar Vari abl e(nane) .

baseAl i as

get Vari abl eCausal ity

Scal ar Vari abl e2 class

Has adifferent meaning in the FM1 2.0 standard, seethe

get Vari abl eDat aType

get Scal ar Var i abl e(nane) .

type

get Vari abl eDescri ption

get Scal ar Vari abl e(nane) .

description

get Vari abl eFi xed

Does not exist in the FMI 2.0 standard

get Vari abl eMax get Scal ar Var i abl e(nane) . get Max

get Vari abl eM n get Scal ar Vari abl e(nane).getM n

get Vari abl eNom nal get Scal ar Vari abl e(nanme) . get Nomi nal
get Vari abl eSt art get Scal ar Vari abl e(nan®e) . start

get Vari abl eVal uer ef

get Scal ar Vari abl e(nane) .

val ueRef erence

get Vari abl evVariability

Scal ar Vari abl e2 class

Has adifferent meaning in the FM1 2.0 standard, seethe

4.5.2. Using both FMI 1.0 and FMI 2.0 in scripts

Tomakeit easier to write scriptsthat can load and use both 1.0 and 2.0 FM Us, thefunctionsset , get , event Updat e,
initialize,aliasSet andbaseAl i as have also been added to the FMI 1.0 interface. Now only theinitialization
and FM1 specific properties/functions needsto be handled separately for the different FM1 versions. Thesedifferent
cases can be constructed using the method f ni Get Ver si on.

70

Chapter 5. FMU export from Simulink

5.1. Introduction

A Simulink model can be exported as an FMU and imported in an FMI-compliant tool such as SimulationX or
Dymola. This section describes how a Simulink model can be exported as an FMU. Code from a Simulink model
is generated by Simulink Coder/Real-Time Workshop and is then wrapped in an FMU for FMI version 1.0 or 2.0
and Model Exchange or Co-Simulation .

5.2. Getting started

Thistutorial gives awalk-through of the steps required to export an FMU for Model Exchange from Simulink.
1. Configure mex compiler.

Simulink Coder/Real-Time Workshop selects the C compiler to be used. In order to provide a hint of which
compiler to use, configure the mex compiler by executing the following command in MATLAB.

>> mex -setup
See Table 2.4 for the full list of supported compilers.
2. Createasimple Simulink model.

Start Simulink to create a simple model.

>> sj mul i nk

The model used in this example integrates an input signal and outputs the integrated value.

71

FMU export from Simulink

#3, untitled * - Simulink l‘:' = éj
Eile Edit View Display Diagram Simulation Analysis Code Tools Help
_ —~
B-=-8 e E-ed®Pb » B w » @ | -
untitled
® untiﬁed hd
|
—=
D » 1
. s D)
In Out1
Integrator
5]
b
Ready 150% VariableStepAuto

Figure5.1 Create anew simple Simulink model.
Open the Configuration Parameters dialog.

Open the Configuration Parameters dialog by clicking Simulation -> Configuration Parameters.... The
dialog may look different depending on which MATLAB version is being used.

72

FMU export from Simulink

% Cenfiguration Parameters: untitled/Configuration (Active) @
Select: Simulation time -
Solver Start time: 0.0 Stop time: 10.0
Data Import/Export
-~ Optimization Solver options
- Diagnostics
ample Time Type: Variable-step - | Solver: lode4-5 (Dormand-Prince) v]

ata Validity Max step size: auto Relative tolerance: 1e-3
ype Conversion

onnectivity Min step size: auto Absolute tolerance: auto
ompatibility Initial step size: auto Shape preservation: |Disable all - E
Model Referencing
aving Number of consecutive min steps: 1
‘- Stateflows
- Hardware Implementati... Tasking and sample time options
- Model Referencing Tasking mode for periodic sample times: Auto
- Simulation Target
[] Automatically handle rate transition for data transfer
i Symbaols
- Custom Code || Higher priority value indicates higher task priority
-I-Real-Time Workshop
Report Zero-crossing options
Comments Zero-crossing control: [Use local settings v] Algorithm: Nonadaptive -
- Symbaols
ustom Code Time tolerance: 10%128%eps Signal threshold: |auto
ebug Number of consecutive zero crossings: 1000
»Interface
4 n 3
" [oK] [cancel] [Help Apply

Figure 5.2 Configuration Parametersdiaog for the simple Simulink model.
Go to Real-Time Workshop or Code Generation.

Click on the Real-Time Workshop or Code Generation node in the tree view to the left. The name depends
on the MATLAB version being used.

73

FMU export from Simulink

% Configuration Parameters: untitled/Configuration (Active) @
Select: Target selection -
Solver System target file: grt.tic
Data Import/Export
- Optimization Language: [C v]
- Diagnostics

Build process

ample Time
ata Validity Compiler optimization level: [Dptimizations off (faster builds) v]

ype Conversion
onnectivity
ompatibility
Model Referencing Generate makefile
aving

“ Stateflow
- Hardware Implementati... Template makefile: grt_default_tmf
-~ Model Referencing
- Simulation Target

TLC options:

Makefile configuration

m

Make command: make_rtw

Code Generation Advisor

Symbols
“- Custom Code Select objective: [Unspeciﬂed v]
E¥Real-Time Workshop B
: Check model before generating code: [[)FF v] [Check model ...]
i~ Report
i~ Comments : I

ustom Code
ebug
»Interface
< I D i
s)’ [oK] [Cancel] [Help Apply

Figure 5.3 Go to the Real-Time Workshop or Code Generation tab.

Select target.

Select System target file by clicking on the Browse... button. Select fmu_mel.tic in the dialog that is open
and then click OK.

74

FMU export from Simulink

% System Target File Browser: exampleModel =5
System Target File: Description:
asap2.tlc ASAM-ASAPZ Data Definition Target
ert.tlc Embedded Coder
ert.tlc Create Visual C/C++ Solution File for Embedded Coder
fmu csl.tlc FMU Co-5imulation 1.0 Standalone (MSVC)
frmu_cs2.tlc FMU Co-5imulation 2.0 Standalone (MSVC)
fmu_mel.tle FMU Model Exchange 1.0 (MSVC)
fmu me2.tlc FMU Model Exchange 2.0 (MSVC)
grt.tlc Generic Real-Time Target
grt.tlc Create Visual C/C++ Solution File for Simulink Coder
idelink ert.tlec IDE Link ERT
idelink grt.tlc IDE Link GRT
realtime.tlc Run on Target Hardware
rsim.tle Rapid Simulation Target
rtwsfen.tle S5-Function Target
Full Hame: C:\Users\FMIToolbox\trunk\src\matlab\fmitoolbox\targets\fmu_me1.tlc
[oK J [Cancel] l Help] Apply

Figure 5.4 Select the system target file fmu_mel.tic in the System Target File Browser.

Build target.

Click Apply in lower right corner of the Configuration Parameter s dialog and then press the Build M odel
button in the Simulink main window. In Figure 5.5 the files generated by the target are listed.

Mame =
slprj
untitled_fru_rbw

|| untitled.mdl.autosave
ﬂ untitled_sf.c

h] untitled_sf.h

#] untitled_sf.mexw32

Figure 5.5 Files generated by the target.

Test FMU.

The FMU block inthe FMI Toolbox can be used to test the generated FMU. To import the FMU in Simulink
see Chapter 3. In Figure 5.6 the created FMU is imported and a sinus signal is connected to the FMU input
port and a scope is connected to the output port. The results can be seen in Figure 5.7; an integrated sinus
signal with amplitude 1 and frequency 1 rad/s.

75

FMU export from Simulink

W untitled] * [E=H ESB ==
Eile Edit View Simulation Format Tools Help
D =E& L, 3 |1D.D |Norrna| j
ﬁU {01 Out1 > .
Sine Wave Scope
untitled
Ready 100% oded5
Figure 5.6 Created FMU imported in FMI Toolbox.
B scope oo s

SEPLL ARBRB PAF -~

Figure 5.7 Simulation result, an integrated sinus signal with amplitude 1.0.

76

FMU export from Simulink

5.3. Simulink Coder targets for FMU export

To export an FMU from Simulink, atarget (System target file) must be selected. The following system target files
generates FMUs according to the different FMU types and versions of the FMI standard. See Section 1.2 for a
general description of the different options.

Table 5.1 Overview of system target files

Targets (System tar get files) FMU type FMI version
fmu_mel.tlic Model Exchange 1.0
fmu_me2.tic Model Exchange 20
fmu_csl.tic Co-Simulation 10
fmu_cs2.tlc Co-Simulation 20

The different targets are documented in subsections below. The Simulink model must be configured according to
the requirements and limitations of the targets. The target may otherwise be unsuccessfully built.

For details of how to configure aModel Exchange target, see Section 5.6.

For details of how to configure a Co-Simulation target, see Section 5.5.

To select atarget in Simulink, open the Configuration Parameter s dialog and go to the Real-Time Workshop/
Code Generation tab (the name depends on which MATLAB version isbeing used), see Figure 5.8. Click on the
Browse... button to selected the System target file . In the browser dialog select one of the system target files for
FMU export, e.g fmu_mel.tlc for exporting as FMI 1.0 Model Exchange, and click OK, see Figure 5.9. Thiswill
enable the FMU target in Simulink and aFM U Export tab will be visible in the tree view to the | eft.

77

FMU export from Simulink

@%p Configuration Parameters: untitled/Configuration (Active) @
Select: Target selection B
- Solver System target file: grt.tic
- Data Import/Export
- Optimization Language: [C
= Diagnostics
Sample Time Build process
-Data Validity Compiler optimization level: [Dpnm\zanons off (faster builds) v]
“Type Conversion TLC options:
-Connectivity
-Compatibility Makefile configuration =
"Model Referencing Generate makefile
-Saving
‘- Stateflow Make command: make_rtw
--Hardware Implementati... Template makefile: grt_default_tmf

--Model Referencing
=I-Simulation Target
-Symbols

Custom Code Select objective: [Unspeciﬂed v]

Ml

Report Check model before generating code: [Oﬁ v] [Check model ...]

Comments
Symbols e
-Customn Code
-Debug

- Interface

Code Generation Advisor

4 i | 3

\) [OK H Cancel H Help] Apply

Figure 5.8 Real-Time Workshop or Code Generation tab selected in the Configuration Parameters dialog.
Select one of the FMU export system target files e.g fmu_mel.tic.

"k System Target File Browser: exampleModel @
System Target File: Description:
asap2.tlc ASAM-ASAP2 Data Definition Target
ert.tlc Embedded Coder
ert.tlc Create Visual C/C++ Solution File for Embedded Coder
fmu_csl.tlc FMU Co-5imulation 1.0 Standalone (M5VC)
fmu_csZ.tlc FMU Co-5imulation 2.0 Standalone (M5VC)
fmu mel.tlc FMU Model Exchange 1.0 (MSVC)
fmu meZ.tlc FMU Model Exchange 2.0 (MSVC)
grt.tlc Generic Real-Time Target
grt.tle Create Visual C/C++ Solution File for Simulink Coder
idelink ert.tlec IDE Link ERT
idelink grt.tlec IDE Link GRT
realtime.tlec Run on Target Hardware
rsim.tle Rapid Simulation Target
retwafen.tle S5-Function Target
Full Name: C:\Users\ FMIToolbox\trunk\src\matlab\fmitoolbox\targets\fmu_mel.tlc
0K] I Cancel I [Help Apply

Figure5.9 System Target File Browser.

78

FMU export from Simulink

All Simulink default settings are valid for building the target. Note that the C compiler must be selected (for some
MATLAB versions) before the FMU target can be built, see Section 5.4 for more information.

The model configuration in Simulink is mainly controlled from the Configuration Parameters dialog. This doc-
umentation only provides a brief description of the settings in the Configuration Parameters. For a detailed de-
scription see MATLAB s documentation.

5.4. Selecting MEX C compiler

The FMU export targetsrelieson the MATLAB built in functions setup_for_visual.mand setup_for_visual_x64.m
to setup the appropriate MSVC C compiler environment. See the MATLAB help for these functions for more
information. In order to provide ahint (for some MATLAB versions) of which compiler these function chooses, one
can configure the regular mex compiler using the following command inthe MATLAB and follow theinstructions.

>> mex -setup

Note that the compiler Simulink Coder/Real-Time Workshop choose to use, must be supported, see Table 2.4.

5.5. Co-Simulation export

Co-Simulation specific information for FMU export is described in these sub sections.

5.5.1. Synchronization of time

The Co-Simulation FMU targets are derived from a grt based target that includes the fixed step solver used in
the Simulink model. The solver and time synchronization mechanism generated by Simulink Coder is compiled
into the FMU. The FMU keepstheinternal synchronization mechanism generated by Simulink Coder in sync with
externa solver/master algorithm during simulation of the FMU. The Simulink Coder synchronization of time is
based on an integer clock system which advancesin time by aincreasing an integer value (clock tic). Thereal time
in the model is calculated from the sample time in the Simulink model and the current clock tic.

A Co-Simulation FMU advances in time by calling an FMI do-stepl function. The do-step function takes real
values, current simulation time (tc) and the step size (hc), as input arguments to calculate the next simulation
time (tc + hc). The do-step function increases the clock tic of the model until it is equal to or only less then one
sampletime before the next simulation time (in other words, increases clock tick aslong as sampletime* clock
tic <=tc+hcisvalid).

Notethat the step size (hz) argument to the FMI function should correspond to the sampletime used in the Simulink
model when the model is exported, otherwise the FMU may have trouble to synchronize the Simulink Coder clock
system with the external solver/master agorithm.

ldo—step corresponds to the FMI 2.0 function fmi2DoStep and FMI 1.0 function fmiDoStep.

79

FMU export from Simulink

5.5.2. Capability flags

A summary of how the FMI standard capability flags are set in the Co-Simulation FMUs are described in Table 5.2
and Table 5.3. For a detailed description of the capability attributes, see FMI standard.

Tableb.2
FM1 1.0 capability flags Value
canHandl eV ariableCommunicationStepSize True
canHandleEvents False
canRejectSteps False
canlnterpolatel nputs False
maxOutputDerivativeOrder 0
canRunAsynchronuously False
canSignal Events False
canBel nstantiatedOnlyOncePerProcess False
canNotUseM emoryM anagementFunctions True
Table5.3
FMI 2.0 capability flags Value

needsExecutionT ool False
canHandl eV ariableCommuni cationStepSize True
canlnterpolatel nputs False
maxOutputDerivativeOrder False
canRunAsynchronuously False
canBel nstantiatedOnlyOncePerProcess True
canNotUseM emoryM anagementFunctions True
canGetAndSetFM Ustate False
canSerializeFMUstate False
providesDirectional Derivative False

80

FMU export from Simulink

5.5.3. Configuration Parameters

5.5.3.1. Solver
Table 5.4 Configuration Parameters-> Solver tab options.
Option Comment and value

Type: Only Fixed-step solvers are supported.

Start time: Used as value to the FMI attribute startTime in the
DefaultExperiment element.

Stop time: Used as value to the FMI attribute stopTime in the De-
faultExperiment element.

5.5.3.2. Optimization

Table 5.5 Configuration Parameters -> Optimization tab options.
Option Comment and value
Inline parameters Enable/Disabled are valid values.

5.5.3.3. Real-Time Workshop/Code Generation

Table 5.6 Configuration Parameters -> Real-Time Wor kshop/Code Gener ation tab options.

Option Comment and value
System target file: fmu_csl.tic or fmu_cs2.tlc
Language: C
TLC options:
Generate makefile Enabled
Make command: make_rtw
Template makefile: fmu_csl_default_tmf or fmu_cs2_default_tmf
Selected objective: Unspecified
Check model before generating code: Off. Other values may also be valid such as On (pro-
ceed with warnings) and On (stop for warnings).
Generate code only Disabled

81

FMU export from Simulink

FMU Export

Table 5.7 Configuration Parameters-> Real-Time Workshop/Code Generation -> FMU Export tab options.
Option Comment and value

Create black box FMU Enable this option if only the necessary minimum in-
formation should be exposed in the FMU. Only inputs
and outputs will be exposed for Co-Simulation FMUs
and additionally states, derivatives and event indicators
with neutral names for Model Exchange FMUs. De-
fault is disabled.

Structured names for parameters If enabled, the parameter variable names will be struc-
tured as specified in the FMI standard. For example, a
name could be: subsystem.block.parameter. This op-
tion is enabled by default.

Include internal signals If enabled, additional signalswill be exposed in the ex-
ported FMU. The purpose of thisisto makeit easier

to debug the FMU. The additional variables will have
causality local. If Includeinternal signalsis enabled,
the optimization parameter Signal storage r euse needs
to be disabled. More information about I ncludeinter-
nal signals can be found in Section 5.8. Include inter-
nal signalsisdisabled by default.

Zip program: Path to a custom zip tool that should be used for com-
pressing the FMU, only available on Windows. De-
fault value is an empty string which means the FMI-
Toolbox uses its own implementation in Java. The
tool compresses the FMU filesinto asingle FMU file,
* fmu and must use the deflate algorithm. The pro-
gram and options are called like: "<ZipProgram>"
<ZipOptions> "< OutputFolder>\<model Name> .fmu"
"<FMUFilesDir>*". <ZipProgram> and <ZipOp-
tions> corresponds to the value set in these two fields
respectively. If for example 7-Zip is preferred over the
Javaimplementation use: C: \ Program Fi | es\ 7-Zi p
\7z. exe

Zip options: Options passed to the zip-tool, only available on Win-
dows. Thisoptionisignored if the default Javaimple-
mentation is used. Default value is an empty string.

The compression method used must be deflate in ac-
cordance with the FMI standard. If for example 7-Zip

82

FMU export from Simulink

Option

Comment and value

is preferred over the Javaimplementationuse: a -r -
tzip

Report

Table 5.8 Configuration Parameters-> Real-Time Workshop/Code Generation -> Report tab options.

Option

Comment and value

Create code generation report

Enable/Disable

Launch report automatically

Enable/Disable

Comments

Table 5.9 Configuration Parameters -> Real-Time Workshop/Code Generation -> Comments tab options.

Comment and value

Option
Include comments Enable/Disable
Simulink block / Stateflow object comments Enable/Disable
MATLAB source code as comments Enable/Disable
Show eliminated blocks Enable/Disable
Verbose comments for SimulinkGlobal storage class | Enable/Disable

Symbols

Table 5.10 Configuration Parameters-> Real-Time Wor kshop/Code Gener ation -> Symbols tab options.

Option

Comment and value

Maximum identifier length:

Any valuethat isvalid for Simulink.

Use the same reserved names as Simulation Target

Enable/Disable

Reserved names:

Custom code

Table5.11 Configuration Par ameter s-> Real-Time W or kshop/Code Gener ation -> Custom codetab options.

Comment and value

Option
Use the same custom code settings as Simulation Tar- |Disable
get
Include custom C code in generated: Not supported

Include list of additional:

Used to supply additional resources for User defined S-
Functions. See, Section 5.5.4.

83

FMU export from Simulink

Debug

Table 5.12 Configuration Parameters-> Real-Time Workshop/Code Gener ation -> Debug tab options.

Option Comment and value
Verbose build Enable/Disable
Retain .rtw file Enable/Disable
Profile TLC Enable/Disable
Start TLC debugger when generating code Enable/Disable
Start TLC coverage when generating code Enable/Disable
Enable TLC assertion Enable/Disable

5.5.4. Support for user defined S-Function blocks

For the Co-Simulation targets (fmu_csl.tlc and fmu_cs2.tic) the source file (*.c) for each S-Function is used.
During code generation, Simulink coder also requires a compiled shared library of the S-function, but this libary

will not be included in the exported FMU.

Any additional include directories, sourcefiles or libraries needed by the S-function must be specified in the Cus-

tom Code tab, see Figure 5.10.

FMU export from Simulink

@ Configuration Parameters: CorbiTablelDs_test/Configuration {Active) @
Select: [T Use the same custom code settings a5 Simulation Target -
Sobwer Include custom C code in generated:
Data Import/Expart
» Optimization Source file Source file:
» Diagnostics Header file
Hardware Implementation Tnitialize function

Moclel Referencing Terminate function
> Sirmulation Target
4 Code Generation

Report
Comments
)

Custom Code

FMU Export

Include list of additional:

Include directories Include directories:
Source files
Libraries

< . 3

J [o']I Cancel H Help Apply

Figure 5.10 Custom Code tab and options for including additional resources.

Additional compiler flags can be added in the Code Gener ation tab after selecting the fmu_csl.tlc or fmu_cs2.tlc
target by modifying the Make command, see Figure 5.11. An example of modification would be to change the
Make command to

'make_rtw FMIT_INTERMEDIATE_LIB_DIR=DEFAULT FMIT_ADDITIONAL_CFLAGS=-DMY _DEFINE'

thiswill add -DMY_DEFINE as a compiler flag for the target.

85

FMU export from Simulink

‘.‘S‘a_}; Configuration Parareters: CombiTablelDs_test/Configuration (Active) @
Select Target selection i
Solver Systam target file: fru_cs1.tle Browsa. .,
Data Import/Export
Optimization Language: C - ‘
Biagnostics Descrigtion: FMU Co-Simulation 1.0 Standalone (MSYC)
Hardware Implementation
Moclel Referencing Build process

Sirnulation Target

Bl Code Generation TLC options:

Report Makefile configuration
comments
Symbols /| Generate makefile
Custom Codl
DZZ;’;’ oae | Make command: ke _rtw FMIT_INTERMEDIATE_LIB_DIR=DEFAULT FMIT_ADDITIONAL_CFLAGS= |
FMU Export Termplate makefils: friu_cs1_default_tmf
Code Generation Advisor
Select objective: |Umspeciﬂed b |
Check model before generating code: |OFF v| | Check model ... ‘
Generate code only Build
Parkage code and artifacts Zip file name:
(7] oK l | Cancel ‘ | Help ‘ ‘ Apply

Figure 5.11 Code Generation tab and the field Make command.

It is recommended that the S-function follow the guidelines for writing non-inlined S-functions, see http://
www.mathworks.se/hel p/rtw/ug/s-functions-for-code-generation.html 2453130 for moreinformation. The S-func-
tion may not call into MATLAB, e.g using mexCalMATLAB.

5.6. Model Exchange export

Model Exchange specific information for FMU export is described in this section.
5.6.1. Configuration Parameters

5.6.1.1. Solver

Model Exchange FMUs are exported without an embedded solver, but the code generated by Simulink Coder dif-
fers depending on solver type. If afixed-step solver is selected in the Simulink model when exporting, the solver's
step time is set as the sample time of the model, and each sample hit will cause an event even if the underlying
dynamics behave in a continuous way. With variable-step solvers, the sampling is replaced by zero-crossing de-
tection, generating events only when required by the model dynamics.

The preferred setting for ME FMU export should be avariable-step solver, asthis prevents excessive events caused
by sampling embedded into the FMU and allows event detection with greater precision than the selected step size.
The exported FMU can still be simulated by both fixed-step and variable-step solvers.

86

FMU export from Simulink

Table5.13 Configuration Parameters -> Solver tab options.

Option Comment and value

Type: All variable-step and fixed-step solvers are supported,
but variable-step solvers should be preferred due to dif-
ferencesin the generated code.

Start time: Used as value to the FMI attribute startTime in the
DefaultExperiment element.
Stop time: Used as value to the FMI attribute stopTimein the De-

faultExperiment element.

Relative tolerance: Used as value to the FMI attribute toler ance in the De-
faultExperiment element if a VariableStep solver is
selected. It is not set otherwise.

5.6.1.2. Optimization

Table 5.14 Configuration Parameters-> Optimization tab options.

Option Comment and value

Inline parameters Enable/Disabled are valid values.

5.6.1.3. Real-Time Workshop/Code Generation

Table 5.15 Configuration Parameters-> Real-Time Wor kshop/Code Gener ation tab options.

Option Comment and value

System target file: fmu_mel.tlc or fmu_me2.tlc

Language: C

TLC options:

Generate makefile Enabled

Make command: make_rtw

Template makefile: fmu_mel _default_tmf or fmu_me2_default_tmf

Selected objective: Unspecified

Check model before generating code: Off. Other values may also be valid such as On (pro-
ceed with warnings) and On (stop for warnings).

Generate code only Disabled

87

FMU export from Simulink

FMU Export

Table5.16 Configuration Parameters-> Real-Time W or kshop/Code Gener ation -> FM U Export tab options.

Option

Comment and value

Support precompiled shared library S-functions (e.g
*.mexw64)

Build model containing precompiled S-functions. De-
fault value is disabled. See, Section 5.6.2.

Support precompiled object S-functions (e.g *.obyj).
Takes precedence over precompiled shared library (e.g
* . mexw64)

Link with S-function’s object file. Takes precedence
over precompiled shared library. Default value is dis-
abled. See, Section 5.6.2.

Compile and link with MATLAB. Must be enabled if
any precompiled file depends on MATLAB

Compile and link with MATLAB. Default valueis dis-
abled. See, Section 5.6.2.

Create black box FMU

Enable this option if only the necessary minimum in-
formation should be exposed in the FMU. Only inputs
and outputs will be exposed for Co-Simulation FMUs
and additionally states, derivatives and event indicators
with neutral names for Model Exchange FMUs. De-
fault is disabled.

Structured names for parameters

If enabled, the parameter variable names will be struc-
tured as specified in the FMI standard. For example, a
name could be: subsystem.block.parameter. This op-
tion is enabled by default.

Include internal signals

If enabled, additional signalswill be exposed in the ex-
ported FMU. The purpose of thisisto makeit easier

to debug the FMU. The additiona variables will have
causality local. If Includeinternal signalsis enabled,
the optimization parameter Signal stor age r euse needs
to be disabled. More information about I ncludeinter -
nal signals can be found in Section 5.8. Includeinter-
nal signalsis disabled by default.

Zip program:

Path to a custom zip tool that should be used for com-
pressing the FM U, only available on Windows. De-
fault value is an empty string which means the FMI-
Toolbox uses its own implementation in Java. The
tool compresses the FMU filesinto asingle FMU file,
* fmu and must use the deflate algorithm. The pro-
gram and options are called like: "< ZipProgram>"
<ZipOptions> "< OutputFolder>\<model Name> .fmu"
"<FMUFilesDir>*", <ZipProgram> and <ZipOp-
tions> corresponds to the value set in these two fields
respectively. If for example 7-Zip is preferred over the

88

FMU export from Simulink

Option

Comment and value

Javaimplementation use: C: \ Program Fi | es\ 7-Zi p
\7z. exe

Zip options:

Options passed to the zip-tool, only available on Win-
dows. This option isignored if the default Javaimple-
mentation is used. Default value is an empty string.
The compression method used must be deflate in ac-
cordance with the FMI standard. If for example 7-Zip
is preferred over the Javaimplementationuse: a -r -
tzip

Report

Table 5.17 Configuration Parameters-> Real-Time Wor kshop/Code Gener ation -> Report tab options.

Option Comment and value
Create code generation report Enable/Disable
Launch report automatically Enable/Disable

Comments

Table5.18 Configuration Parameters -> Real-Time Workshop/Code Generation -> Comments tab options.

Option Comment and value
Include comments Enable/Disable
Simulink block / Stateflow object comments Enable/Disable
MATLAB source code as comments Enable/Disable
Show eliminated blocks Enable/Disable
Verbose comments for SimulinkGlobal storageclass |Enable/Disable

Symbols

Table 5.19 Configuration Parameters-> Real-Time Wor kshop/Code Gener ation -> Symbols tab options.

Option

Comment and value

Maximum identifier length:

Any valuethat isvalid for Simulink.

Use the same reserved names as Simulation Target

Enable/Disable

Reserved names:

89

FMU export from Simulink

Custom code

Table5.20 Configuration Par ameter s-> Real-Time W or kshop/Code Gener ation -> Custom codetab options.

Option Comment and value

Use the same custom code settings as Simulation Tar- |Disable

get

Include custom C code in generated: Not supported

Include list of additional: Not supported

Debug

Table5.21 Configuration Parameters-> Real-Time Workshop/Code Generation -> Debug tab options.
Option Comment and value

Verbose build Enable/Disable

Retain .rtw file Enable/Disable

Profile TLC Enable/Disable

Start TL C debugger when generating code Enable/Disable

Start TLC coverage when generating code Enable/Disable

Enable TLC assertion Enable/Disable

5.6.2. Support for user defined S-Function blocks

For the Model Exchange targets (fmu_mel.tlc and fmu_me2.tlc) each S-Function need to be precompiled, either
as ashared library S-Function (*.mex32 or *.mex64) or an object S-Function (*.obj). Then the respective options
Support precompiled shared library S-functions and Support precompiled object S-functions can be used
and if any of the precompiled files depends on MATLAB the option Compile and link with MATLAB must
be enabled.

It is recommended that the S-function follow the guidelines for writing non-inlined S-functions, see http://
www.mathworks.se/hel p/rtw/ug/s-functions-for-code-generation.html 2#f53130 for moreinformation. The S-func-
tion may not call into MATLAB, e.g using mexCalMATLAB.

If an S-function uses parameter values in its mdlStart callback, these will always take on their default values, re-
gardless of parameters set in the exported FMU. They will still be marked as FMU parameters, since Simulink
Coder and FMI Toolbox cannot know where in the S-function code they are used. It is recommended that S-func-
tionsinlined into ME FMUs initialize their parameters in alater callback, e.g. during the first call to mdlOutputs.

Note: including a compiled S-Function in the FMU will give the FMU the same dependencies as that of the S-
Function. In this case, the FMU will typically only run on machines that have MATLAB installed.

90

FMU export from Simulink

5.7. Parameters

This section describes the support for different Simulink parameter settings and how Simulink parameters are
exposed as FMI parametersin an FMU.

All Simulink parameters setting are supported for the FMU targets. For a detailed list of parameter settings in
Simulink and how they are exposed in the FMU, see Table 5.22. Note that parameters with start values NaN and
Inf will be calculated parametersin the FMU.

Table 5.22 Parameter settingsfor code generation in Simulink.

Parameter settingsin Simulink | FMU targets Supported FMU parameter

Default settings fmu_csl.tlc Yes parameter
fmu_cs2.tlc Yes tunable parameter
fmu_mel.tlc Yes parameter
fmu_me2.tlc Yes parameter

Global (tunable) parameter - fmu_csl.tlc Yes parameter

i l\c/)vti)glﬁgtorage class: Smulink- " cep tic Yes tunable parameter
fmu_mel.tlc Yes parameter
fmu_me2.tlc Yes parameter

Inline parameter 2 fmu_csl.tlc Yes Not exposed
fmu_cs2.tlc Yes Not exposed
fmu_mel.tlc Yes Not exposed
fmu_me2.tlc Yes Not exposed

@0ption is set from the Configuration Par ameters-> Optimization tab options

The names of the Global tunable parameters are explicitly specified by the user. For other parameters, their names
in the exported FMU will reflect the structure of the model. More precisely, they will have names on the form
{"subsystem name".} "block name"."block parameter name". Where the content in {} is repeated zero or more
times depending on the number of nested Subsystems the Simulink block is placed in.

5.8. Internal signals

Using the option I ncludeinter nal signalswill make additional internal signalsavailable in an exported FMU. The
purpose of thisisto makeit easier to debug the FMU. Theoptionisavailablein Simulation >M odel Configur ation
Parameters > Code Generation > FMU Export. Include internal signalswill not have any effect if the export
option Create black box FMU is enabled. If Include internal signals is enabled, the optimization parameter
Signal storage reuse needsto be disabled. Include internal signalsis disabled by default.

91

FMU export from Simulink

Not all internal signals can be exposed in the generated FMU. Which signal s are exposed also depends on whether
exporting asaModel Exchange FMU or a Co-Simulation FMU. Block reduction may also affect which variables
will bevisible, see: https://se.mathworks.com/hel p/simulink/gui/block-reduction.html. To understand which addi-
tional signalswill be exposed we will be looking at two simple examples.

Gainl.0ut between_gain

cs cs Gain2.0ut after_gain
ME ME ME ME
.—>{1 3 > 5 ‘ 1
- before_gain between_gain after_gain
In1 . . Qut1
Gain1 Gain2

Figureb5.12 A system that when exported asan FMU with internal signalswill have the additional shown variables.
Which variables are exposed depends on if exporting as an Model Exchange FMU or a Co-Simulation FMU.

First we look at the system found in Figure 5.12. Here we can see that no block inputs are exposed in the resulting
FMU in either case. In the Model Exchange case, block outputs and their respective named signalswill be exposed.
In the Co-Simulation case, block outputs and named signalswill only be exposed if they connect to ablock and not
when they connect to model outputs. The variables will have structured namesin the exported FMU, for example
Gainl.0ut asshown inthefigure. All internal signalsthat are exposed as variablesin the exported FMU will have
the causality local, which are read only variables.

1 P In1 Out1 P In1 Out1 > 1)

before_subsystem between_subsystem after_subsystem
In1 QOut1

Subsystem 1 Subsystem?2
Figure5.13 A system that when exported as an FMU with internal signalswill have no additional variables at this
level in the system. See Subsystem1l in Figure 5.14 and Subsystem2 in Figure 5.15.

Subsystem1.Gain1.0ut Subsystem1.Gain2.0ut Subsystemi.after_gain
cs cS cS
ME ME ME

before_gain 3 "5/ after_gain

In1 . . Out1
Gain1 Gain2
Figure 5.14 A subsystem that when exported as an FMU with internal signals will have the additional shown
variables. In this subsystem, the same variables are exposed when exporting as aModel Exchange FMU compared
to a Co-Simulation FMU. Thisis Subsystem1 of the system found in Figure 5.13

92

FMU export from Simulink

Subsystem2.Gain1.0ut
cs Subsystem?2.Gain2.0ut Subsystem2.after gain
ME ME ME

D s> SF

before_gain after_gain
In1 Out1

Gain1 Gain2

Figure 5.15 A subsystem that when exported as an FMU with internal signals will have the additional shown
variables. Which variables are exposed depends on if exporting as a Model Exchange FMU or a Co-Simulation
FMU. Thisis Subsystem?2 of the system found in Figure 5.13

Secondly welook at the system found in Figure 5.13. This system is comprised of two subsystems where each sub-
system containstwo gain blocks, Subsysteml can be seenin Figure 5.14 and Subsystem?2 can be seenin Figure 5.15.
In Figure 5.13 we can see that no additional variableswill be exposed at the top level when connecting subsystems.
Signals that have not been given a name will also not be exposed, as seen in Figure 5.14 and Figure 5.15. In the
Model Exchange case, outputs from non-subsystem blocks in subsystems and associated named signals will be
visible. Inthe Co-Simulation case, outputs from non-subsystem bl ocksin subsystems and associated named signals
will bevisibleif they indirecly or direcly connect to a non-subsystem block and not atop level output.

A limitation of the internal signals is that the structured naming is not merged with the structured naming of the
parameters. That is, the parametersfor a subsystem may not be displayed together with theinternal signal variables
in some importing tools.

5.8.1. Test points

It is possible to make more signals and outputs available in exported FMU by using test points. General informa
tion about what test points are can be found here: https://se.mathworks.com/hel p/simulink/ug/working-with-test-
points.html. Test points can be used to expose signals between subsystems as variables in the exported FMU. All
variables associated with test points in the exported FMU will have a name that starts with TestPoints and will
have the causality local.

TestPoints.between subsystem TestPoints.after_subsystem
S [&)
ME ME
? ? ?
1 In1 Out1 In1 Out1 1
9 before_subsystem g between_subsystem v after_subsystem @
n u

Subsystem1 Subsystem?2

Figure 5.16 A system that is the same as the one found in Figure 5.13 but with added test points. The additional
exposed variables are shown, which will be available in both Model Exchange and Co-Simulation FMUs.

In Figure 5.16 test points are added to al three of the named signals. Signals coming from top system inputs will
not be exposed even if we add test points to them. Signals coming from subsystem outputs will be exposed if and
only if they are named.

93

FMU export from Simulink

5.9. Supported data types

Supported data types in the FMU export are the same as those supported by Simulink, see Table 5.23. Simulink
defines a Boolean to have the values 1 for true and O for false.

Table 5.23 Supported data typesin Simulink.

Name Description
double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-hit integer

To view the datatypes supported for different blocks, execute the following command inthe MATLAB Command
Window.

>> showbl ockdat at ypet abl e

Simulink data types are mapped to FMI data types according to Table 5.24 below.

Table 5.24 Simulink data types conversion to FM| datatypestable.

Simulink datatype FMI 1.0 datatype FMI 2.0 data type
double fmiRea fmi2Red
single fmiReal fmi2Real
int8 fmilnteger fmi2lnteger
uint8 fmilnteger fmi2Integer
int16 fmilnteger fmi2lnteger
uint16 fmilnteger fmi2lnteger
int32 fmilnteger fmi2lnteger
uint32 fmilnteger fmi2Integer
Simulink Boolean values fmiBoolean fmi2Boolean

94

FMU export from Simulink

Complex input and output portsare NOT supported, since there isno corresponding datatypein the FMI standard.
Complex parameters will not be exposed in the FMU.

Fixed-point input and output ports are NOT supported, since there is no corresponding data type in the FMI stan-
dard. Fixed-point parameters will not be exposed in the FMU.

For more information about data types in Simulink, go to http://www.mathworks.se/hel p/simulink/ug/work-
ing-with-data-types.html.

5.10. Supported blocks

Thetablesbelow listsall blocksthat have been tested. If the Comment columnisempty, the block isfully supported.
If the Comment for ablock is not empty, it may indicate that the usage of the block is restricted or not supported.

All blocksaretested using using avariabletime step solver for the Model Exchangetarget and afixed step solver for

the Co-Simulation target. The blocks has not been tested using frame based sampling mode. Frame based sampling
mode requires a Signal Processing Blockset license.

Table 5.25 FMI blocks.

Block Comment
fmu_cs lib/FMU CS See table Table 2.6 for supported source-code FMUs.
See Section 3.3.7 for using FMUs with shared libraries.
fmu_me_lib/FMU ME See table Table 2.6 for supported source-code FMUSs.
See Section 3.3.7 for using FMUs with shared libraries.

Table 5.26 Continuous blocks.
simulink/Continuous/Integrator

simulink/Continuous/Integrator Limited

simulink/Continuous/Integrator, Second-Order
simulink/Continuous/Integrator, Second-Order Limited
simulink/Continuous/State-Space

simulink/Continuous/Transfer Fcn

simulink/Continuous/Zero-Pole

simulink/Continuous/PID Controller
simulink/Continuous/PID Controller (2DOF)
simulink/Continuous/Transport Delay
simulink/Continuous/Variable Time Delay Partial supported. Generates different results.

95

FMU export from Simulink

simulink/Continuous/V ariable Transport Delay

Partial supported. Generates different results.

simulink/Continuous/Derivative

Partial supported. Derivative approximation is depen-
dent on the length of the integrator step which causes
the results to be different.

Table 5.27 Discontinuities blocks.

simulink/Discontinuities/Saturation

simulink/Discontinuities’'Dead Zone

simulink/Discontinuities/Rate Limiter

simulink/Discontinuities/Saturation Dynamic

simulink/DiscontinuitiesyDead Zone Dynamic

simulink/Discontinuities/Rate Limiter Dynamic

simulink/Discontinuities/Backlash

Partial supported. Generates different results.

simulink/Discontinuities/Relay

simulink/Discontinuities/Quantizer

simulink/Discontinuities/Hit Crossing

simulink/Discontinuities’Coulomb & Viscous Friction

simulink/Discontinuities’Wrap To Zero

Table 5.28 Discrete blocks.

simulink/Discrete/Unit Delay

simulink/Discrete/Integer Delay (renamed in 2011b to
Delay)

simulink/Discrete/Delay (new since 2011b)

simulink/Discrete/ Tapped Delay

simulink/Discrete/Discrete-Time Integrator

simulink/Discrete/Discrete Transfer Fcn

simulink/Discrete/Discrete Filter

simulink/Discrete/Discrete Zero-Pole

simulink/Discrete/Difference

simulink/Discrete/Discrete Derivative

simulink/Discrete/Discrete State-Space

simulink/Discrete/Transfer Fcn First Order

96

FMU export from Simulink

simulink/Discrete/Transfer Fcn Lead or Lag

simulink/Discrete/Transfer Fcn Real Zero

simulink/Discrete/Discrete PID Controller

simulink/Discrete/Discrete PID Controller (2DOF)

simulink/Discrete/Discrete FIR Filter

simulink/Discrete/Memory

simulink/Discrete/First-Order Hold

simulink/Discrete/Zero-Order Hold

Table 5.29 Logic and Bit Operations blocks.

simulink/Logic and Bit Operations/Logical Operator

simulink/Logic and Bit Operations/Relational Operator

simulink/Logic and Bit Operations/Interval Test

simulink/Logic and Bit Operations/Interval Test Dy-
namic

simulink/Logic and Bit Operations/Combinatorial Logic

simulink/Logic and Bit Operations/Compare To Zero

simulink/Logic and Bit Operations/Compare To Con-
Stant

simulink/Logic and Bit Operations/Bit Set

simulink/Logic and Bit Operations/Bit Clear

simulink/Logic and Bit Operations/Bitwise Operator

simulink/Logic and Bit Operations/Shift Arithmetic

simulink/Logic and Bit Operations/Extract Bits

simulink/Logic and Bit Operations/Detect Increase

simulink/Logic and Bit Operations/Detect Decrease

simulink/Logic and Bit Operations/Detect Change

simulink/Logic and Bit Operations/Detect Rise Positive

simulink/Logic and Bit Operations/Detect Rise Nonneg-
ative

simulink/Logic and Bit Operations/Detect Fall Negative

simulink/Logic and Bit Operations/Detect Fall Nonpos-
itive

97

FMU export from Simulink

Table 5.30 Lookup Tables blocks.

simulink/Lookup Tables/Lookup Table

simulink/Lookup Tables/Lookup Table (2-D)

simulink/Lookup Tables/Lookup Table (n-D)

simulink/Lookup Tables/Prelookup

simulink/Lookup Tables/Interpolation Using Prelookup

simulink/Lookup Tables/Direct Lookup Table (n-D)

simulink/Lookup Tables/Lookup Table Dynamic

simulink/Lookup Tables/Sine

simulink/Lookup Tables/Cosine

Table 5.31 Math Operations blocks.

simulink/Math Operations/Sum

simulink/Math Operations/Add

simulink/Math Operations/Subtract

simulink/Math Operations/Sum of Elements

simulink/Math Operations/Bias

simulink/Math Operations’Weighted Sample Time
Math

Not supported when continuous sample times are used.
See note®

simulink/Math Operations/Gain

simulink/Math Operations/Slider Gain

simulink/Math Operations/Product

simulink/Math Operations/Divide

simulink/Math Operations/Product of Elements

simulink/Math Operations/Dot Product

simulink/Math Operations/Sign

simulink/Math Operations/Abs

simulink/Math Operations/Unary Minus

simulink/Math Operations/Math Function

simulink/Math Operations/Rounding Function

simulink/Math Operations/Polynomial

simulink/Math Operations/MinMax

98

FMU export from Simulink

simulink/Math Operations/MinMax Running Resettable

simulink/Math Operations/Trigonometric Function

simulink/Math Operations/Sine Wave Function

simulink/Math Operations/Algebraic Constraint

Not supported. Algebraicloopsare not supported in gen-
erated code.

simulink/Math Operations/Sqrt

simulink/Math Operations/Signed Sqrt

simulink/Math Operations/Reciprocal Sqrt

simulink/Math Operations/Assignment

simulink/Math Operations/Find Nonzero Elements

simulink/Math Operations/Matrix Concatenate

simulink/Math Operations/V ector Concatenate

simulink/Math Operations/Permute Dimensions

simulink/Math Operations/Reshape

simulink/Math Operations/Squeeze

simulink/Math Operations/Complex to Magnitude-An-
gle

simulink/Math OperationsMagnitude-Angle to Com-
plex

simulink/Math Operations/Complex to Real-Imag

simulink/Math Operations/Real-lmag to Complex

8ot supported by the S-function CodeFormat which the the FMU target is derived from.

Table 5.32 Model Verification blocks.

simulink/Model Verification/Check Static Lower
Bound

Seenote?.

simulink/Model Verification/Check Static Upper Bound| See note 2.
simulink/Model Verification/Check Static Range Seenote @,
simulink/Model Verification/Check Static Gap Seenote @

simulink/Model Verification/Check Dynamic Lower
Bound

Seenote?.

simulink/Model Verification/Check Dynamic Upper
Bound

Seenote 2.

99

FMU export from Simulink

simulink/Model Verification/Check Dynamic Range | See note ,
simulink/Model Verification/Check Dynamic Gap Seenote ?,
simulink/Model Verification/Assertion See note @,

simulink/Model Verification/Check Discrete Gradient

See note & Requires fixed-step solver, see note b,

simulink/Model Verification/Check Input Resolution

Seenote?,

#The block option Stop simulation when assertion fails does not affect the FMU simulation. Instead use the Enable assertion option to decide

if the FMU contains the assertion from the block.

Bimited by the S-function CodeFormat which the the FMU target is derived from.

Table 5.33 Model-Wide Utilities blocks.

simulink/Model-Wide Utilities/Trigger-Based Lin-
earization

Not supported, see note 2.

simulink/M odel-Wide Utilities' Timed-Based Lineariza-
tion

Not supported, see note 2.

simulink/Model-Wide UtilitiessModel Info

simulink/M odel-Wide UtilitiessDocBlock

simulink/Model-Wide Utilities/Block Support Table

T C-file for the block is missing. Code for the block cannot be generated.

Table 5.34 Ports & Subsystems blocks.

simulink/Ports & Subsystems/Inl

simulink/Ports & Subsystems/Out1

simulink/Ports & Subsystems/Trigger

simulink/Ports & Subsystems/Enable

simulink/Ports & Subsystems/Function-Call Generator

simulink/Ports & Subsystems/Function-Call Split

simulink/Ports & Subsystems/Subsystem

simulink/Ports & Subsystems/Atomic Subsystem

simulink/Ports & Subsystems/CodeReuseSubsystem

simulink/Ports & Subsystems/M odel

Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/Model Variants

Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/Function-Call Subsystem

simulink/Ports & Subsystems/Configurable Subsystem

100

FMU export from Simulink

simulink/Ports & Subsystems/Variant Subsystem

Not supported. FMU target is not model reference com-
pliant.

simulink/Ports & Subsystems/For Each Subsystem

Not supported for Model Exchange, see note 2.

simulink/Ports & Subsystems/For Iterator Subsystem

simulink/Ports & Subsystems/While Iterator Subsystem

simulink/Ports & Subsystems/Triggered Subsystem

simulink/Ports & Subsystems/Enabled Subsystem

simulink/Ports & Subsystems/Enabled and Triggered
Subsystem

simulink/Ports & Subsystemg/If

simulink/Ports & Subsystemg/If Action Subsystem

simulink/Ports & Subsystems/Switch Case

simulink/Ports & Subsystems/Switch Case Action Sub-
system

@lock is not supported for generation of a Simulink Coder/Real-Time Workshop targe.

Table 5.35 Signal Attributes blocks.

simulink/Signal Attributes/Data Type Conversion

simulink/Signal Attributes/Data Type Duplicate

simulink/Signal Attributes/Data Type Propagation

simulink/Signal Attributes/Data Type Scaling Strip

simulink/Signal Attributes/Data Type Conversion In-
herited

simulink/Signal Attributes/IC

simulink/Signal Attributes/Signal Conversion

simulink/Signal Attributes/Rate Transition

simulink/Signal Attributes/Signal Specification

simulink/Signal Attributes/Bus to Vector

simulink/Signal Attributes/Probe

simulink/Signal Attributes’Weighted Sample Time

simulink/Signal Attributes/Width

Table 5.36 Signal Routing blocks.

simulink/Signal Routing/Bus Creator

101

FMU export from Simulink

simulink/Signal Routing/Bus Selector

simulink/Signal Routing/Bus Assignment

simulink/Signal Routing/Vector Concatenate

simulink/Signal Routing/Mux

simulink/Signal Routing/Demux

simulink/Signal Routing/Selector

simulink/Signal Routing/Index V ector

simulink/Signal Routing/Merge

simulink/Signal Routing/Environment Controller

simulink/Signal Routing/Manual Switch

simulink/Signal Routing/Multiport Switch

simulink/Signal Routing/Switch

simulink/Signal Routing/From

simulink/Signal Routing/Goto Tag Visibility

simulink/Signal Routing/Goto

simulink/Signal Routing/Data Store Read

simulink/Signal Routing/Data Store Memory

simulink/Signal Routing/Data Store Write

simulink/Signal Routing/State Reader

simulink/Signal Routing/State Writer

Table 5.37 Sinks blocks.

simulink/Sinks/Out1

simulink/Sinks/Terminator

simulink/Sinks/To File

Supportsonly "Saveformat” setto Array. TimeSeriesare
not supported by Simulink Coder/Real-Time Workshop
generated code.

simulink/Sinks/To Workspace

simulink/Sinks/Scope

simulink/Sinks/Floating Scope

simulink/Sinks/XY Graph

simulink/Sinks/Display

102

FMU export from Simulink

simulink/Sinks/Stop Simulation

Table 5.38 Sources blocks.

simulink/Sources/Inl See note®.
simulink/Sources/Ground See note @
simulink/Sources/From File See note ?,
simulink/Sources/From Workspace Seenote @,
simulink/Sources/Constant See note @,

simulink/Sources/Enumerated Constant

Not supported. Enumerator is not supported by the tar-
get.

simulink/Sources/Signal Builder Seenote ?,
simulink/Sources/Ramp Seenote &,
simulink/Sources/Step Seenote @
simulink/Sources/Sine Wave See note ®,
simulink/Sources/Signal Generator Seenote ?,
simulink/Sources/Chirp Signal Seenote &,
simulink/Sources/Random Number See note @,
simulink/Sources/Uniform Random Number See note ®,
simulink/Sources/Band-Limited White Noise Seenote ?,
simulink/Sources/Pul se Generator Uses a variable sample time, see note b,
simulink/Sources/Repeating Sequence Seenote @
simulink/Sources/Repeating Sequence Stair See note 2
simulink/Sources/Repeating Sequence | nterpol ated Seenote ?,
simulink/Sources/Clock See note @,
simulink/Sources/Digital Clock See note @,

simulink/Sources/Counter Free-Running

Due to the nature of the block, the output depends on
how many times the FMI functions are called which
varies between different FM | import toolsand sol ver set-
tings.

simulink/Sources/Counter Limited

Seenote 2.

A source block should specify it's sampling time explicitly and not inherit it. The source signal may otherwise depend on the FMI import

tool and solver settings.

BNot supported by the S-function CodeFormat which the the FMU target is derived from.

103

FMU export from Simulink

Table 5.39 User-Defined Functions blocks.

simulink/User-Defined Functions/Fcn

simulink/User-Defined Functions MATLAB Fcn (re-
named in 2011a, see Interpreted MATLAB Function)

Not supported. Not yet supported by Real-Time Work-
shop/Simulink Coder.

simulink/User-Defined Functiong/Interpreted MAT-
LAB Function (new since 20114a)

Not supported. Not yet supported by Real-Time Work-
shop.

simulink/User-Defined FunctionEmbedded MAT-
LAB Function (renamed in 2011a, see MATLAB Func-
tion)

simulink/User-Defined Functionss MATLAB Function
(new since 2011a)

simulink/User-Defined Functions/S-Function

simulink/User-Defined Functions/Level-2 MATLAB S
Function

simulink/User-Defined Functions/S-Function Builder

Supported if TLC file is generated.

simulink/User-Defined FunctiongMatlab System

simulink/User-Defined Functions/Argument I nport

Not supported. Not supported by the S-Function Code-
Format which the Model Exchange targets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Argument Outport

Not supported. Not supported by the S-Function Code-
Format which the Model Exchangetargets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Function Caller

Not supported. Not supported by the S-Function Code-
Format which the Model Exchangetargets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Simulink Function

Not supported. Not supported by the S-Function Code-
Format which the Model Exchangetargets are based on.
The Co-Simulation targets only support reusable code.

simulink/User-Defined Functions/Event listener

Not supported for the Model Exchange targets (not sup-
ported by the S-Function CodeFormat).

simulink/User-Defined Functions/Initialize Function

Not supported for the Model Exchange targets (not sup-
ported by the S-Function CodeFormat).

simulink/User-Defined Functions/Terminate Function

Not supported. Works in theory for the Co-Simulation
targets but need to be used with ert.tlc target to be useful.

simulink/User-Defined Functions/Reset Function

Not supported.

104

FMU export from Simulink

Table5.40 Additional Math & Discrete/Additional Discrete blocks.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form |1

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fen Direct Form |1 Time Varying

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Fixed-Point State-Space

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay External IC

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Resettable External 1C

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled External 1C

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay Enabled Resettable External 1C

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Resettable External RV

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled Resettable

simulink/Additional Math & Discrete/Additional Dis-
crete/Unit Delay With Preview Enabled Resettable Ex-
ternal RV

Table5.41 Additional Math & Discrete/Additional Math blocks.

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Increment Real World

105

FMU export from Simulink

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Real World

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Increment Stored Integer

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Stored | nteger

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement To Zero

simulink/Additional Math & Discrete/Additional Math:
Increment - Decrement/Decrement Time To Zero

Table 5.42 Control System Toolbox blocks.

cstblockg/LTI System

5.11. Examples

5.11.1. Using a Simulink model to control a Vehicle model

This example demonstrates how a Simulink controller model for a controlled AWD application can be used in a
vehicle model to control the AWD actuator”s torque capacity. Thisis done in two steps, first by using the FMU
target to export the Simulink model and then import it the resulting FMU in an FM| compliant tool that simulates
the vehicle modél, in this case Dymola 2013 FDO1 with Vehicle Dynamics Library. Note that in order to simulate
the vehicle model in Dymola, avalid license for VDL isrequired.

Thelist of files used in this example are found in Table 5.43.

Table 5.43 Examplefiles.

<installationfol der>/examples/mel/win32/
AWDController FMITC.mdl

Simulink controller model for aHang-On to rear AWD.

<installationfol der>/examples/mel/win32/
AWDController FMITC.fmu

FMU file generated from the Simulink controller. The
example demonstrates how thisfileis generated.

<installationfol der>/examples/mel/win32/
ControlledAWD.mo

A Modelica vehicle model that is simulated in Dymo-
|a(2013 FDO01) using the Simulink controller.

5.11.1.1. Export Simulink model as FMU

1. Copy examplefiles

Copy the example files to a folder with write access, i.e. C:\Users\<username>\Documents\awdexample\.
The Simulink model may not open properly otherwise.

106

FMU export from Simulink

Configure mex compiler

Configure the mex compiler in order to help Simulik Coder/Real-Time Workshop selecting an appropriate
compiler, see Section 5.4 for more information.

Open Simulink control model

Open AWDController FMITC.mdl in Simulink.

W AWDControllerFMITC ol = =]
File Edit Miew Simulation Farmat Tools Help
OeES » |1U.D |N0rmal ﬂ B2 ¥

() 2013, Modelon AB
Demo controller for a Hang-On to rear AW

This dema cantraller just shows how a torque
distribution ¢an be accomplished.

EngineTorque
ClampFarce
Torque Torque

Bias 2
ClampForce

EngineAngWel

MWheealfngyel

Minimum
MheelAngvel

Ready 100% ode4s

Figure5.17 Simulink AWD controller model.

Gotothe Real-Time Workshop/Coder Generation

Open the Configur ation Parameter s dialog and go to the Real-Time Wor kshop/Coder Gener ation (name
dependson MATLAB version).

Select tar get

Select System target file by clicking on the Browse... button. Select fmu_mel.tlc in the dialog that opens
and then click OK.

Build target

107

FMU export from Simulink

Click Apply in lower right corner of the Configuration Parameters dialog and then press the Build

button in the Real-Time Workshop/Code Generation tab. When the build process has finished the
AWDControllerFMITC.fmu will be located in the current directory.

5.11.1.2. Import FMU in vehicle model and simulate it in Dymola

1. Open vehicle model

Open ControlledAWD.mo in Dymola 2013 FDO1 and sel ect the Accel eratingWhileCornering component, see
Figure 5.18.

g “TDingram]
[Fle Edt Smulston Plot Animation Commands Window Help Linear
EHQAEG R VYOO A

Packsge Bromser

=leles
B -2 - Z- -« aBHAEEL ox -

Run ‘Commands | Build road' before simulation

8 x

Packages

Model created to demo the FMIT Coder
Import Simulink cortroller into Dymola

L3 ‘TEK Pacejka@\
L Active Brakes, Engine and AWD
" - -
: | @ Modeling [Simutaton
Figure5.18 Vehicle model ControlledAWD.mo open in Dymola.

Remove placeholder for the FM U controller component

Remove the FMU controller component,
ControlledAWD.Components.Controllers. AWDControllerFMITC_fmu. This is just a placeholder for the
FMU that was generated from the Simulink.

108

FMU export from Simulink

Package Browser g x

Packages
-E--OMDEIE“EEI Reference

+ -Mudelica

E'"Llnnamed

= h ControlledatwD
- '@Compnnents
- [JContrallers

Dpen Class
- CDI‘ItrD"Er'I.I'DL P
C A Open Class in Mew Windowr
- onkraoller

S CDntrDIIerMIL Mew "
;-ﬁDriveline Order '
- B 5 danTEKPacejkalz_ARWD # Delete
+ [t odelExport Renarne..
~* AcceleratinghileCornering Z Check
+: /J1 Modelon Copy Path Ctrl+C
+ -/ vehicleDrynamics Q search...
5 [[JModelicaservices Info
Parameters

I
Figure 5.19 Remove the vehicle model's placehol der for the FMU controller.

Import the AWDController FMITC FMU

In the menu bar, click File -> Import -> FMU - All variables... and select AWDControllerFMITC.fmu in
the file browser that opens. A new component AWDController FMITC_fmu is now added in the Package
Browser.

Renametheimported FMU

Right click on the new AWDController FMITC_fmu component and select Rename. In the Rename M od-

elica Class dialog that opens, select ControlledAWD.Components.Controllersin thelnsert in package: drop
down list, see Figure 5.20.

109

FMU export from Simulink

Package Browser g x

Packanes

+-€WModelica Reference
+ - Modelica
g---Unnamed

—,h Controlledaw'D

=) [C] Components
— [Cllcentrallers
EngineTorgue
-f_|AWDControllerFMITC_fmu)
Controller\n'DL Renarne Modelica Class @
ControllerFMI Mame of new model:
F ferfcertrallertr. AwvDCantrallerFMITC_fru
+ ' |jDr|veI|ne Description:
B SedanTEKP acejkalz_ABWD 0
F [odelexport Insert in package:
" @ AcceleratingwhileCormeting lv =3
- /J1 Madelan
ConkrolledawD .
+: /J VehicleDynamics ControlledawD, O
i Conkrolled Components, Controllers

+- [CModelicaservices

Figure 5.20 Rename AWDControllertFMITC_fmu component.

Controlledai D, Components, Driveline

Build road

Select the AcceleratingWhileCornering component in the file browser and then in the menu bar, click Com-
mands -> Build road. Dymola will switch to the Simulation tab. Click Stop in the dialog that opens and
say's Show preview?.

Select AcceleratingWhileCornering before simulating

Go back to the Modeling tab and select the Accel eratingWhileCornering to enable the pre configuration sim-
ulation settings such as simulation time and tolerances.

Simulate the model
Go back to the Simulation tab and click on the Simulation button.
View results and animation

Use the results variable browser to view the results or run the animation.

110

FMU export from Simulink

Figure5.21 Vehicle model simulated using the Simulink controller.

111

Chapter 6. Design of Experiments

6.1. Introduction

Design of experiments (DoE) is commonly used in the engineering design processt o

» Optimize product design

 Calibrate system

 Verify capability and performance over the entire operating envelope of the process

DoE was originally developed for physical experiments, but is now commonly applied to virtual experiments on
detailed simulation models to identify the main relationships between system parameters, operating conditions,

and performance.

The DoE toolsin the FMI Toolbox for MATLAB support static and dynamic analysis of FMU modelsin multiple
dimensions for Model Exchange 1.0 FMU models. Note that Co-Simulation FMUs are not supported.

Thefeaturesfor dynamic analysis (linearize FMU at each test point, show bode diagram and step responses) require
the MATLAB control system toolbox

6.1.1. Concepts

experiment
Simulation and analysis of FMU at a specified operating/design space point.

factor
FMU variable that is part of the DoE design, varies between the experiments.

test matrix
Matrix of operating points where the experiments are run. Each row corresponds to an experiment. Each
column corresponds to a DoE factor.

response
A variable that isinfluenced by the DoE factors. The response can be an FMU output or state, or some other
variable that is computed from the result of the experiments

112

Design of Experiments

6.1.2. Workflow

oo

g _

23

o -

= Test Run Visualize
0 matrix experiments result
< Dok

~ — n

3 2 variable Y

=2 spec MATLAB

Figure 6.1 FMU DoE analysis workflow

1. Create an FMU model using an FMI compliant tool. Variables to be used as inputs in dynamic analysis must
be set as FMU inputsin the FMU. Variables to be stored should be set as FMU outputs.

2. Specify DOE factorsin an Excel sheet orinaMATLAB script.

3. Use the MATLAB tools presented in this chapter to create a test matrix and analyze the model at each point
in the matrix.

4. Analyze and visualize result.

An important step of the DoE analysis is defining the test matrix. The toolbox supports three types of designs:
* Space-filling quasi-Monte Carlo

* Monte Carlo

 Full factorial (multi-dimensional grid)

Additionally, the tools support a user-supplied test matrix.

6.2. Getting started

In this Getting started tutorial, an analysis of a simulation model will be demonstrated using the DoE tools. The
FMU model analyzed is generated from Modelica Standard Library and exported with Dymolaasan FMU ME 1.0.

113

Design of Experiments

force
springDamper

=
=20

fixedTe?
—
K
T=2498.15

Figure 6.2 MassForce.mo example model in Dymola

realExpression

mass.s

realExpressi?

springD? D—|>

position

heatflow

The model consists of a simple mechanical system: aforce is applied to a body that is connected to a fixed wall
through a spring-damper system. The system has one input: the force acting on the body, and two outputs: the

position of the body and the heat dissipated in the damper.
Three factors are considered in the DoE analysis:

* force

* spring constant

» mass of body

The DoE factors are defined in an Excel sheet (atemplate is provided with the toolbox, DoEPar anet er s. xI t x):

@ doe_parametersxlsk - Microsoft Excel --:--ELQJ‘
Home Insert Page Layout Formulas Data Review View Developer FMI (=] e o &3
3 * Calibri 11 - XA = E;] - =¢ General - ijfl % _,_;‘dl %’ﬂlnsert' - EW l?a
EERd = g% Delete ~ E' =
g |nsu-E 8 A s S| %0 | @A Sl o O | o S IR
Clipboard Font Alignment Number Styles Cells Editing
=9~ -
G5 - % | 100 s
rs
-
A B = D E F G H I] K L M ;
1
2
3 name type dist value min max mean stdev =
1
zl force FMUInput uniform 50 ool
6 mass.m FMUParameter uniform 10 20
7 springDamper.c FMUParameter normal 100 20
8 springDamper.d FMUParameter constant 20
9
10 -
M 4+ ¥| Sheetl ~Sheet? ~Sheetd ~¥J [l il] a0
Ready | P | | [0 @ 1005 () [} (+)

Figure 6.3 DoE parameter definition in Excel

114

Design of Experiments

The information on the model and experiment setup is used to create a MATLAB FMJUDoESet up object:

>> doe_setup = FMJDoESet up(' MassForce. fmu', ' doe_paraneters. x| sx')
doe_setup =

FMJUDoESet up obj ect

properties:
fru_fil e_nanme: MassForce. fnmu
exp_setup: cell array with 4 variabl es specified
options: struct with 6 fields

net hods: gnt, nct, fullfact, custom

The DoE experiments are run by calling a method of the FMUDoESet up object. To run a Monte-Carlo analysis that
sample each of the DoE factors from the distributions specified in the Excdl file, the nc method is called:

>> nbr_of _experinents = 100;
>> doe_result = doe_setup. nc(nbr_of _experinents);

The FMUDoESet up method nt generates the test matrix and runs the model at each experiment point to find steady
state and linearization. An FMUDoEResul t object is returned:

>> doe_result =
FMUDoEResul t obj ect

properties:
experiment _status: 100 out of 100 experinents successful

generation_date: 20-Jun-2013 09: 53: 15

nodel _data: struct with 4 fields

doe: struct with 6 fields

constants: struct with 2 fields

steady_state: struct with 3 fields

initial: ---

linsys: struct with 5 fields

options: struct with 6 fields
conp_tine: 0.54701 s per exp on average

nmet hods: main_effects, bode, step
The steady-state values of model inputs, outputs, and states are stored in doe_resul t . st eady_stat e

>> doe_result.steady_state
ans =

u: [100x1 doubl €]

y: [100x2 doubl €]

x: [100x2 doubl €]

The method mai n_ef f ect s plotsavariable against all DoE factors. The mass position (first FMU output) is plotted
as

115

Design of Experiments

>> position = doe_result.steady_state.y(:,1);
>> doe_result. mai n_effects(position);

equivalently, themai n_ef f ect s method may be called with astring that correspondsto the name of an FMU input,
output, or DoE factor

>> doe_result. main_effects('position');

File Edit View Insert Tools Desktop Window Help

eHdE K RAANW € 08|80

FOI = 0.36942 FOI=0
15 + 15 - -
* * . o+
- * - *
+* *
- 1 * ‘*0” . 1 t~ + * . e L
% .o ‘:t‘ 0‘: Y " t‘.}f‘ ‘.3" :u: +
hd
S 05 3 TR 05| r oty e St
- ».., . * - + + Re - o
0 0
40 60 80 100 10 15 20
force mass.m
FOI = 0.628

position

0
50 100 150
springDamper.c

Figure 6.4 Plot of steady-state mass position vs. DoE factors

6.3. Function reference

The DoE tools operate on MATLAB objects of three classes:

FMUModelME1
FMU model object, as described in Chapter 4.

Methods:
e trim

e linearize

116

Design of Experiments

FMUDoESetup
Stores info on the DoE factors and their distributions, the FMU model, and simulation options.

Methods:
e gmc
e mc
o fullfact
* custom

FMUDoEResult
Stores result from a set of experiments, including input, output, state, and linearization at all test points.

Methods:
* main_effects
* bode (requires Control System Toolbox)

* step (requires Control System Toolbox)

6.3.1. FMUModelME1

The FMUM odelMEL1 class has several methods and properties, asdescribed in Chapter 4. Methodsthat are relevant
for the DoE features are described here.

6.3.1.1. trim

Find steady-state solution of FMU model

[X_SS,U SS, Y SS] = frmu_nodel .trinm()

Find steady state values of state X_SS, input U_SS, and output Y_Ss for FMU model f mu_nodel . The model should

be loaded and instantiated before callingtri m

[X_SS,USS, Y SS] = frmu_nodel . tri m(U)

Find steady state for input U.

[X_SS, U SS,Y_SS] = frmu_nodel . trim U, X_GUESS)

117

Design of Experiments

Use X_GUESS asinitial guessfor X_Ss.

[X_SS,USS, Y_SS] = frmu_nodel . trinm U, X GUESS, Y, U GUESS)

Find steady state for aspecified value of the output Y. Theinput that matchesthe output Y will befound iteratively. If
an output Y is specified, the corresponding free input should be set to NaN. U_GUESS isused asinitia guessfor U_Ss.

Example:

For atwo-input-two-output system, find the steady-state solution whereu(1) = 2 andy(2) = 5. Thesecond input
u(2) isfreetovary to achievey(2) = 5. Theargumentsshould bechosenasu = [2 NaN]'; Y = [NaN 5] ;

[X_SS, U SS, Y SS| = fnu_nodel . trin(U, X GUESS, Y, U GUESS, U M N, U_MAX)

Constrains the solution U_ss to liewithinu_M Nand U_MAX.

[X_SS,U_SS, Y_SS] = fmu_nodel .trin(U, X GUESS, Y, U GUESS, U M N, U_MAX, OPTI ONS)

Uses a struct oPTI ONS for simulation options. Use the trimset function to get an OPTI ONS struct with the default
values that can be modified and sent to trim:

>> OPTIONS = trinset();
>> OPTI ONS. Maxl ter = 100; % Default is 50, see 'help trinset'
>> [X_SS,U SS,Y_SS| = fnu_nodel . trin{U, X GUESS, Y, U GUESS, U M N, U MAX, OPTI ONS) ;

[X_SS, U_SS, Y_SS, EXI TFLAG = frmu_nodel . tri m(U, X_GUESS, Y, U_GUESS, U M N, U_MAX)
EXI TFLAG indicates the success of the iterative algorithm to find input for a given output.
* EXI TFLAG=0 --- Success

e EXI TFLAG=1 --- Could not find inputs that match the specified outputs due to input saturation or local minimum.
The solution at the last iteration is returned.

* EXI TFLAG=2 --- Maximum number of iterations reached. The solution at the last iteration is returned.

6.3.1.2. linearize

Linearization of FMU moded using finite differences

[A/B,C D YLIN = frmu_nodel .linearize()

118

Design of Experiments

[A B, CD YLIN = frmu_nodel .l inearize(XLIN, ULI N)

Computes linearization of the FMU model object f mu_nodel . The model should be loaded and instantiated before
callingl i neari ze. Themodel islinearized with the state XL1 Nand theinput ULI Nor with the current state and input
of the FMU if XLI Nand ULI N are not given. Note that linearization is normally done at steady-state. If XLI N and
ULl Ndo not correspond to a stationary state of the system, unexpected results may be obtained. Returns A, B, C, D
the system matricesfor the linearized system from all FMU inputsto al FMU outputs, and YLI N: the system output
at the linearization point.

6.3.2. FMUDoOESetup

The FMUDOESetup class is used to store information on the virtual experiment setup. It stores the name of the
FMU file, info on parameter ranges and distributions, and general simulation options.

6.3.2.1. Constructor

Constructor

DOE_SETUP = FMJDoESet up(FMJ_FI LE_NAVE, EXP_SETUP_FI LE)

Define the DoE experiment setup. FMJ_FI LE_NAME is the name of the FMU file. EXP_SETUP_FI LE is the name of
an Excel spreadsheet that contains the distribution specification on the DoE factors. A template for the Excel file
is provided with the FM1 Toolbox, DoESet up. x| sx.

The first non-empty row of the Excel sheet should contain column titles name, type, dist, etc. The FMU variables
are listed below the column title row. Empty rows and columns are discarded.

Required columns:

name Name of FMU variable

type One of FMUInput, FMUOutput, FMUParameter

dist One of the supported distributions: constant, uniform,
normal, triangle, free

Depending on the choice of dist, additional columns are required:

dist required columns optional columns
constant value
uniform min, max
normal mean, stdev
triangle min, max peak
free nominal min, max

119

Design of Experiments

The option dist=freeis only available for FMU inputs, and is used when one or more FMU outputs are specified.
The input will be chosen iteratively to match the specified output. The value is constrained to lie in the range
specified by the min and max columns, and the value in column nominal isused asinitial guess.

Additional columns that specify data used for certain DoE designs can also be added:

column description

levels Used for gridding DoE designsto specify the number of
grid levelsfor each variable

Note that each of the DoE methods (gnt, f ul | f act etc.) use different algorithms to design a test matrix from the
distribution information. All column data are not used for all types of DOE designs. See the documentation on
these methods below.

|._7| =5 |= Bookéd - Microsoft Excel == <)
m Home Insert Page Layout Formulas Data Review View FMI & @ = P IR
"—':1 a% Calibri A = Er; - = General - fﬁ(nnditmna\Fnrmang' %“Inser{ - E - W \}a
Ehd L $ - % + [gEFormat as Table - = Delete - ﬂ' - T
Pafte = 4 B 7 U~ & A | == E FrEE %0 8 (5]} Cell Styles ~ :jFormat' 2- éi?tretrc: ;;T:d:i
Clipboard Font Alignment Number Styles Cells Editing
G8 M Jx e
A B c D E F G H I] K L M :
1
2 name type dist value mean stdev min max levels peak nominal
3
4 mass FMUParameter normal 30 0.5 =
5 temperature FMUInput uniform 275 285
6 constant.k FMUParameter triangle 30 50 2 45
7 position FMUQutput constant 0.5
EI force FMUInput free I .I 20 100 3 35
9
10
11
12 B
W 4 » ¥ | Sheetl Sheet? Sheet3 . ¥1 |I|4 | 1] | 13 m
Ready | | [H|E & 1003 (=) y] @)

Figure 6.5 Example of experiment setup Excel sheet.

DOE_SETUP = FMJUDoESet up(FMJ_FI LE_NAME, EXP_SETUP_FI LE, EXP_SETUP_SHEET)

EXP_SETUP_SHEET is either the name or the index of an Excel sheet in the file EXP_SETUP_FI LE from which the
parameter specification istaken.

DOE_SETUP = FMJUDoESet up(FMJ_FI LE_NAME, EXP_SETUP_ARRAY)

Alternatively, the experiment setup can be specified as a cell array in MATLAB. The data in the example Excel
file above can equivalently be entered as

exp_setup = cell(5,1);

120

Design of Experiments

exp_setup{1}. name = ' nmass';
exp_setup{1}.type = ' FMJParaneter';
exp_setup{1}.dist = 'normal';
exp_setup{1}. mean = 30;
exp_setup{1}.stdev = 0.5;
exp_setup{2}.nane = 'tenperature';
exp_setup{2}.type = ' FMJ nput';
exp_setup{2}.dist = 'uniform;
exp_setup{2}.mn = 275;
exp_setup{2}. max = 285;

exp_setup{3}.name = 'constant.k';
exp_setup{3}.type = ' FMJ nput';
exp_setup{3}.dist = 'triangle';
exp_setup{3}.mn = 30;
exp_setup{3}. max = 50;
exp_setup{3}. peak = 45;
exp_setup{4}.nane = 'position';
exp_setup{4}.type = ' FMJQut put ' ;
exp_setup{4}.dist = 'constant';
exp_setup{4}.value = 0.5;
exp_setup{5}.name = 'force';
exp_setup{5}.type = ' FMJ nput';
exp_setup{5}.dist = 'free';
exp_setup{5}.mn = 20;
exp_setup{5}. max = 100;
exp_setup{5}. peak = 35;

doe_setup = FMJDoESet up(' nodel . frmu' , exp_set up) ;

FMUDoESet up(FMJ_FI LE_NANE, EXP_SETUP_FI LE, EXP_SETUP_SHEET, OPTI ONS)

Sets the FMUDoESet up property opti ons to the OPTI ONS struct. The default struct can be accessed through the
function f mu_doe_opt i ons.

OPTI ONS = fnu_doe_options()

Thefieldsin the struct oPTI ONs may then be modified by the user before using it in the FMUDoESet up constructor.

field

allowed values (default first)

description

node

steady_state

perform DoOE analysis at system
steady-state

initial

perform DoE analysis after initiaiza-
tion

121

Design of Experiments

field

allowed values (default first)

description

Trmax

positive scalar (default 1e6)

maximum simulation horizon before
reaching steady-state

linearize

on

compute linearization at all test points
(only available if MATLAB Control
System Toolbox isinstalled)

of f

do not compute linearization (auto-
matically selected if the MATLAB
Control System Toolbox is not avail-
able)

m nr eal

on

return minimal realization of lin-
earized system between selected in-
puts and outputs

of f

return full linearized system

i nput _i ndex

al

linearization computed from all FMU
inputs

index vector

linearization only computed from in-
put indices specified in vector

out put _i ndex

al

linearization computed to all FMU
outputs

index vector

linearization only computed to output
indices specified in vector

sol ver

odel5s

Name of MATLAB ode solver

sol ver _settings

solver settings struct

see MATLAB command odeset

6.3.2.2. DOE methods

Four DoE designs are supported

gnt Space-filling quasi-Monte-Carlo design in a hypercube
nc Monte-Carlo sampling

full fact Full-factorial multi-dimensional grid

cust om User-defined test matrix

All DoE methods perform the same analysis steps:

122

Design of Experiments

» Generate atest matrix according to the experiment setup specification

e Simulate the FMU at al points in the test matrix to extract the state input and output, either at steady-state
(default) or after initialization depending on the node setting in the options struct

¢ Linearize the system at each point in the test matrix
* Return an FMUDoEResul t object (see next section) with the analysis result
The difference between the functions is how the test matrix is computed.

To illustrate the difference, consider a DoE run with two factors, xland x2. Both factors are specified to have
distribution normal, mean = 0, and stdev = 1. Examplesof test matricesthat can be constructed by thefour functions
are shown below:

gmc mc fullfact custom
3 % S 3 3 3
* Rdaadd * * *
+ o+ LR S
20 T, et 2 e 2 218 B A%
+ . e *f s LR A b4 b e
+ + ‘. oy . + IR
1 . * + + 1 P T4 ¢+ 4+ 4 2 4 4 » 11+ IR
i +* LY 4 + + b
* . % LA N I : Pony i
ooofpr A +* oo + ?’ + L GO0 seees & 4
= + + o = v AT = L A = + + b
° SR T 1 i
*

R P .t -1 *o. “' 14 + + ¢ + + + + & 1+ + + +
A L 3 + + I
* . . e + e e s b b 3

Dl T et -2 . .) 2t % 3 it

* ”0 . L B A + + p a4

bt e 3 3 3

-2 o 2 -2 2 -2 2 2 1] 2
wl w1 w1 1

Figure 6.6 Example of 2D test matrices

The choice of design should be based on the type of questions to be answered by the analysis. The space-filling
QMC design distributes the points in the test matrix evenly in a hypercube. This is useful for investigating the
achievable capacity of the system over a design space, e.g., for process optimization. It is also applicable to find
the worst-case scenario over arange of process operating conditions.

For statistical analysis, e.g., determine the distribution of some performance value given statistical distributionson
component parameters, the Monte Carlo design should be used.

Full factorial design can be used as an alternative to the QM C design if the number of DoE factors are small or if
agrid design is specifically requested. In general, the QM C design is more efficient for investigating the system
in a hypercube.

gmc - Quasi-Monte Carlo analysis

Space-filling quasi-Monte-Carlo DoE design.

DOE_RESULT = doe_set up. qmc(NBR_OF_EXPERI MENTS)

The test matrix is generated using a Sobol sequence, which is a quasi-random sequence that aims to distribute
the test points evenly in a hypercube. For DoE factors with uniform or triangular distribution, the edges of the

123

Design of Experiments

hypercube are taken from the ni n and max values. For DoE variables with a normal distribution, the hypercube
edges are taken at mean = 3*stdev. The number of experiments are given by NBR_OF_EXPERI MENTS. Note that qnc
does not sample according to the specified distribution. Rather, it isatool to explore the model within a specified
parameter space.

mc - Monte Carlo analysis
Monte-Carlo DoE design.
DOE_RESULT = doe_set up. nt(NBR_OF_EXPERI MENTS)

The test matrix is generated by sampling independently from the distributions that are specified for each DoE
factor. The number of experiments are given by NBR_OF EXPERI MENTS.

fullfact - Full factorial analysis

Full factorial DoE design.

DOE_RESULT = doe_setup. full fact ()

The test matrix is generated as a multi-dimensional grid. For DoE factors with uniform or triangular distribution,
the edges of the grid are taken from the ni n and max values. For DoE variables with anormal distribution, the grid
edges aretaken at mean + 3*stdev. The number of levelsfor each factor istaken fromthel evel s field. For factors
where no value is given for levels, three levels are used as default.

DOE_RESULT = doe_set up. ful | fact (DEFAULT_LEVELS)

Changes the default number of levels to DEFAULT_LEVELS. The value in DEFAULT_LEVELS is overridden for the
factorswhere thefield | evel s is specified in the experiment setup.

custom - User-defined test matrix

DoE analysis with user-provided test matrix.

DOE_RESULT = doe_set up. cust om(TEST_MATRI X, VARI ABLE_NAVES, VAR ABLE_TYPES)

Runsthe DoE experiments at operating pointsin auser-provided test matrix. Each row in TEST_MATRI X corresponds
to an experiment, and each column to a variable. The names of the variables corresponding to the test matrix
columnsaresuppliedinthecell array VARI ABLE_NAMES, and their types (FMUInput, FMUParameter, FMUOQutput)
are supplied in the cell array VARI ABLE_TYPES. Variable specifications that are provided in the doe_set up object
are applied if their di st valueiseither const ant or f r ee, otherwise they are ignored. .

Example

124

Design of Experiments

test_matrix = [

IE

var_nanmes = {'ul','u2','sone_paraneter'};

var_types = {' FMJ nput',' FMJ nput',"' FMJPar aneter'};

result = doe_setup.custon(test_matrix, var_nanes,var_types);

6.3.3. FMUDoEResult

The DoE methods return an FMUDoEResul t object. The information from the experiment can be accessed as prop-

erties on the object. Three methods are provided to visualize the result:

main_effects

Plots aresponse variable against each of the DoE factors

bode

Shows the Bode diagram of the ensemble of linear systems at all test points

step

Shows the step response of the ensemble of linear systems at al test points

6.3.3.1. properties

field

subfields

description

generation_date

time and date when the FMUDoEResul t object was generated

nodel _dat a

name

name of FMU

i nput _nanes

names of all FMU inputs

out put _nanes

names of all FMU outputs

generation_date

time and date when the FMU was generated

doe nbr _of _experinents number of experimentsin DoE design

ndi m number of DoE factors

fact or _nanes names of DoE factors

factor_types types of DoE factors (FMUInput, FMUOutput, FM UParame-

ter)

test_matrix test matrix

generating_function the name of the FMUDoESet up method that generated the result
constants nanes names of all variables that were constant in all the experi-

ments, but changed from the default FMU values

125

Design of Experiments

field subfields description
val ues values for these constants
experi nent _st at us vector of sizenbr _of _experi ments x 1 that denotethe status
of the FMU analysis at each test point
0 | Successful

-1 | Could not find inputs to match specified outputs because
of input saturation or alocal minimum. If input was saturated,
return values for steady-state solutions and linearized model
are taken dightly away from the saturation border. If alocal
minimum was found, return values are taken at the last itera-
tion point.

-2 | Thealgorithm to find inputs to match specified outputsdid
not converge. Return values correspond to last iteration point.

-99 | Error in simulating the FMU with the given settings, no
values are returned at this test point.

steady_state u steady-state input u
y steady-state output y
X steady-state state x
linsys Sys cell array where each item correspondsto the system lineariza-
tion at one of the test points
u_i ndex theindices of FMU inputsthat areinputsto the linear systems
(the default is all inputs, see Section 6.3.2.1)
y_i ndex the indices of FMU outputs that are outputs to the linear sys-
tems
u_names the names of the linear system inputs
y_nanes the names of the linear system outputs
options the opt i ons struct that were used when generating the result
struct
conmp_tine vector of size nbr _of _experinents x 1 with the computa-

tional time in seconds for each experiment

6.3.3.2. main_effects

Visualization of the main effects of the DoE factors on aresponse variable.

[FO,TS] = doe_result.min_effects(RESPONSE)

126

Design of Experiments

RESPONSE is either a vector of length doe_r esul t . doe. nbr _of _experi ment s, or the name of an FMU input or
output variable. The function generates a series of subplots where the RESPONSE variableis plotted against each of
the DoE factors. A second order polynomial isfitted to the data and also shown in the plots.

FO isavector of first-order indices: the ratio of variance explained by the second-order polynomial approximation
to thetotal variancein theresponse. TS (total score) istheratio of variance described by a second-order polynomial
fitin al of the variables (without interaction terms), to the total variance in the response.

[FO,TS] = doe_result.min_effects(RESPONSE, RESPONSE_LABEL)

Uses the string RESPONSE_LABEL for they axis label.

[FO,TS] = doe_result.min_effects(RESPONSE, RESPONSE_LABEL, CLASSES)

Color codes the dots according to the array CLASSES. CLASSES should be a vector of integers or an array of strings,
each unique element in CLASSES will be assigned to a different color.

[FO,TS] = doe_resul t.main_ef f ect s(RESPONSE, RESPONSE_LABEL, CLASSES, FI G_NR)

Generates the plot in figure FI G_NR.

Caution:

If the factors are not independent (e.g., if a custom test matrix was used or the number of experiments is small
compared to the number of factors), false correlations between factors and response may appear. The first-order
indicesFa and total score TS values should be interpreted with care.

Example:

A vector asresponse variable

yl result.steady_state.y(:,1);
y2 result.steady_state.y(:,2);
doe_result.main_effects(y2-yl);

An FMU output variable name as response variable

doe_result.main_effects('y2");

Using a CLASSES vector

indicator_array = cell (doe_result.doe.nbr_of experinents,1);
u2 = doe_result.steady_state.u(:,2);
for k=1:1:doe_result.doe. nbr_of experinents

if u2z <2

127

Design of Experiments

indicator_array{k} = 'low ;
elseif u2 > 5

indi cator _array{k} = 'high';
el se

indi cator_array{k} = 'nedium;
end

end
yl = doe_result.steady state.y(:,1);
doe result.nmain_effects(yl, ' first output',indicator_array);

6.3.3.3. bode

Visualize Bode plot variability for the system linearizations computed at the test points.
PLOT_SUBSET = doe_resul t. bode()

Computes the magnitude and phase for each of the linear systemsin doe_resul t. | i nsys. sys. To generate the
plot efficiently, only a subset of the systems are shown in the plot. By default, the systems with the highest and
lowest phase and magnitude at each frequency are determined. The union of these systems over all frequenciesare
then plotted. This means that the systems that are excluded have a frequency response that lie within the range of
the ones that are shown. For MIMO systems, the selection of systems to show are done individually for each pair
of inputs and outputs. See the PLOTMODE argument below for alternative methods to select a subset of systems to
show. Returns the subset of systemsthat are shown in the plot in the cell array PLOT_SUBSET.

PLOT_SUBSET = doe_resul t. bode(| NPUT_I| NDEX, OUTPUT _| NDEX)

For MIMO systems, only shows the Bode plot for the systems between the inputs and outputs specified in
I NPUT_I NDEX and OUTPUT_| NDEX.

PLOT_SUBSET = doe_resul t. bode(1 NPUT_I NDEX, OUTPUT_| NDEX, W RANGE)

Selects the subset of systems and shows the Bode plot in the frequency range specified by W RANGE =
{w_m n, w_nmax}.
PLOT_SUBSET = doe_resul t. bode(| NPUT_I NDEX, OQUTPUT_| NDEX, W_RANGE, PLOTMODE)

PLOTMODE determines the subset of systems that are shown. The default, where all systems that span the envelope
of the magnitude and phase are shown, correspondsto PLOTMODE = * envel ope' . PLOTMODE = 'al | ' showsall
systems (max number of systemsis 100). PLOTMODE = NBR where NBRis a positive integer selects NBR systems at
random. For this option the same selection is applied to al input-output pairs.

PLOT_SUBSET = doe_resul t. bode(1 NPUT_| NDEX, OUTPUT | NDEX, W RANGE, PLOTMODE, FI G_NR)

Generates the plot in figure FI G_NR.

128

Design of Experiments

6.3.3.4. step

Visualize step response variability for the system linearizations computed at the test points.
PLOT_SUBSET = doe_result.step()

Computes the step response for each of the linear systemsin doe_resul t. 1 nsys. sys. To generate the plot effi-
ciently, only asubset of the systems are shown in the plot. By default, the systemsthat span the envel ope of the step
response trajectories are plotted. This meansthat the systems that are excluded have a step response that lie within
the range of the onesthat are shown. For MIMO systems, the selection of systems to show are done individually
for each pair of inputs and outputs. See the PLOTMODE argument below for alternative methods to select a subset of
systems to show. Returns the subset of systems that are shown in the plot in the cell array PLOT_SUBSET.

PLOT_SUBSET = doe_resul t.step(l NPUT_I NDEX, OUTPUT_| NDEX)

For MIMO systems, only shows the step responses between the inputs and outputs specified in | NPUT_I NDEX and
OUTPUT_| NDEX.
PLOT_SUBSET = doe_resul t.step(| NPUT_I NDEX, OUTPUT_| NDEX, T_MAX

Selects the subset of systems and shows the step responsein thetimerange [0, T_MAX] .

PLOT_SUBSET = doe_resul t.step(l NPUT_| NDEX, OUTPUT | NDEX, T_MAX, PLOTMODE)

PLOTMODE determines the subset of systems that are shown. The default, where al systems that span the envelope
of the step response trajectories are shown, correspondsto PLOTMODE = ' envel ope' . PLOTMODE = ' al | ' shows
all systems (max number of systemsis 100). PLOTMODE = NBRWwhere NBR is a positive integer selects NBR systems
at random. For this option the same selection is applied to all input-output pairs.

PLOT_SUBSET = doe_resul t. st ep(l NPUT_| NDEX, OUTPUT | NDEX, T_MAX, PLOTMODE, FI G_NR)

Generates the plot in figure FI G_NR.

6.4. Examples
6.4.1. Mass-Spring system

The mass-spring model was introduced in Section 6.2.
6.4.1.1. Define the Experiment Setup

To load the experiment setup data from the second sheet in the Excel file doe_par anet er s. xI sx, the DOE setup
constructor is called with the optional sheet name argument:

129

Design of Experiments

doe_setup = FMJDoESet up(' MassForce. fmu',"' doe_paraneters. x|l sx',"' Sheet 2')

|'._7_| doe_parameters.xlsx - Microsoft Excel | = ‘ @-ﬂ
m Home Insert Page Layout Formulas Data Review View Developer FMI [~ e = B OES
i .| - T - - 5
J & Calibri S AT A General 5] Conditional Formatting g*= Insert z ‘;F \]5% I
By~ A $ ~ % » [BEFormatasTable I Delete - j' <
Paste - - - [Sort & Find &
g |®1U oA 68 5% (55 Cell Styles - =Y Format ~ | &2~ Filter - Select ~
Clipboard Font Alignment MNumber Styles Cells Editing
=9~ -
F& - 5= -~
=
E
A B c D E F G H 1 J K L T
1
2
3 name type dist value min max mean stdev =
1
5 force FMUInput uniform 50 100
6 mass.m FMUParameter uniform 10 20
7 springDamper. FMUParameter normal 100 20
g springDamper.i FMUParameter constant SOI !
9
10
11 .
4 4 v ¥ | Sheefl | Sheet2 estd ¥ nEN il | » [
Ready | (3 | |[E@ @ w0 =) y] (+)

Figure 6.7 DoE parameter definition in Excel

The DoE design spans three dimensions: the force input force, the mass parameter mass.m, and the spring constant
parameter springDamper.c. A constant is also defined in the Excel sheet, the damping constant springDamper.d.
All FMU parameters that are not specified in the Excel sheet will be set to their default valuesin the FMU.

Thedoe_set up object storesinformation on the FMU file name and the parameter specification loaded from Excel

>> doe_set up
doe_setup =

FMUDoESet up obj ect
properties:
fru_file_name: MassForce. fmu
exp_setup: cell array with 4 variables specified
options: struct with 6 fields

met hods: gnt, nc, fullfact, custom
6.4.1.2. Run DoE experiments
The gnc DoE method is an efficient algorithm to spread test points approximately evenly in a hypercube.

To run the gnc method with 100 test points, call

>> nbr_of _experinments = 100;

130

Design of Experiments

>> doe_result = doe_setup. gnc(nbr_of _experinents);

Thetest matrix from a DoE run can be accessed indoe_resul t. doe. t est _mat ri x. According to the specification
of the gt method, the test points should be distributed evenly between the min and max values for the parameters
with dist=uniform, and between mean+-3*stdev for variables with dist=normal. The following code illustrates
thetest designin 3D and projected in 2D

test_matrix = doe_result.doe.test _matri x;
factor_nanes = doe_result. doe. factor_nanes;

% 3D- pl ot

U%o--------e - -

subplot (4,1,1); plot3(test_matrix(:,1),test_matrix(:,2),test_matrix(:,3),'0"); grid on;
x| abel (factor_nanes{1}); vyl abel (factor_nanmes{2}); zlabel (factor_nanmes{3});

subplot (4,1,2); plot(test_matrix(:,1),test_matrix(:,2),'0");
x| abel (factor_names{1}); yl abel (factor_nanes{2});
subplot (4,1,3); plot(test_matrix(:,2),test_matrix(:,3),'0");
x| abel (factor_names{2}); ylabel (factor_nanes{3});
subpl ot (4,1,4); plot(test_matrix(:,3),test_matrix(:,1),'0");
x| abel (factor_names{3}); ylabel (factor_nanes{1});

'F\gural ":' Ehﬁ‘
File Edit View Insert Tools Desktop Window Help L
DEeEdEe KhRaNe | €| 08 50

R 20 120 100
s Qm Qg
3 Oc?f& %oo&o © 1fE BB, 080 O% &
g g Y% Soo B [3258g snotg 80 @OOO
g £ & OO&% H = Oc%o b S "
= 95 S O ol S 100150 e 5] 2 Az
2 E | o2 3.0 2 bR 2 @30"0@ &
£ c o]
= %@%0080% 5w (90@8300 Oéb%%o ® o o?pé’
. o694, Pelo Yo
H B [5)
50 10 80 40
mass.m 10 force 40 60 80 100 10 15 20 80 100 120
force mass.m springDamper.c

IL:igure 6.8 DOE test matrix plot

The test points are approximately uniformly distributed in the cube spanned by the three DoE factors.
6.4.1.3. Analyze results

Steady-state

The steady-state values of model inputs, outputs, and states are available in doe_r esul t . st eady_state

>> doe_result.steady_state
ans =

u: [100x1 doubl €]

y: [100x2 doubl €]

131

Design of Experiments

x: [100x2 doubl e]

The method mai n_ef f ect s plots a response against all DoE factors. The mass position (first FMU output) is
plotted as

>> position = doe_result.steady_state.y(:,1);
>> doe_result. main_effects(position);

equivalently, themai n_ef f ect s method may be called with astring that correspondsto the name of an FMU input,
output, or DoE factor

>> doe_resul t. mai n_effects(' position');

Figure 5 = & &
File Edit View Insert Tools Desktop Window Help El
DedEe KW Rad® ¢ 08 =80
FOI = 0.82931 FOI=0
15 15
1 +, 1 * .
= e * s LA
= ot 0::' e o : . vt .:":.:o e
= e ¥ F ¥
=1 - + Tt e Ve s
=05 b A + 05 "0.“ Yer ¢" +% “ ”’0
0
40 60 80 100 10 15 20
farce mass.m
FOI = 0.21608
15
1 ‘.“ LTS
_E AT N
= PO bttt
a o’ﬁ\‘;’*‘on"»”
o 05 * “00000‘ ‘0:. o.

0
80 90 100 110 120
springDamper.c

Figure 6.9 Plot of steady-state mass position vs. DoE factors

In the range examined in the DoE design, the main influencing factor for the steady-state mass position is the
applied force. The spring constant also influences the steady-state position but to a smaller extent, and the mass
has no influence at al.

The value on top of each subplot is the first-order-index; it tells the percentage of the variation in the plotted
response variable that is explained by a second-order polynomial in the corresponding DoE factor. Note that the
FOI indices may sum to more than 1 if the factors are not perfectly uncorrelated.

132

Design of Experiments

The dotsin the scatter plots may be color coded by using an integer vector that represent different classes asinput
to the mai n_ef f ect s method. Each unique integer in the vector is assigned to a different color.

>> force = doe_result.doe.test_matrix(:,1);

>> j ndi cator _vector = zeros(size(force));

>> jndi cator_vector(force>90) = 1;

>> j ndi cat or _vector(force<60) = -1;

>> doe_result.main_effects(' position',' mass position',indicator_vector);

o D ===

File Edit Wiew Insert Tools Desktop Window Help ¥
Deds h|RaNe € 0E =O
FOI = 0.82931 FOI=0
1.5 15
C
:*g 1 1(+ =+ * s
§_ ﬂ:‘" : Q’AQ:::‘% * \
w Tl e T kT
= 045 05 ’*t”’,o A *‘ M
E
0 - - 0 -
40 60 80 100 10 15 20
force mass.m
FOI = 0.21608
1.5
C
-g 9 "» *oy
= x, .
b
E 05f ¥ h“’?ﬂ?o’}} + 0
E .1
0
a0 100 120
springDamper.c

Figure 6.10 Plot of steady-state mass position vs. DoE factors with color coding.
Theinfluence of force (high = red, medium = green, low = blue) is now visiblein all DoE factor subplots.
Dynamic analysis

The linearization of the system at the pointsin the test matrix isavailablein doe_resul t. 1 i nsys

>> doe_result.linsys

133

Design of Experiments

ans =
sys: {100x1 cell}
u_index: 1
y_index: [1 2]
u_names: {'force'}
y_nanmes: {'position' 'heatflow }

doe_resul t.linsys. sys isacell array with a state-space model for each point in the test matrix. The method
bode plotsthe Bode diagrams for the set of linear systems.

>> doe_result.bode(1,1,[],"all");

plots the Bode diagram for all linear systemsin the doe_r esul t struct from the first FMU input (here force) to
the first FMU output (here mass position).

File Edit View Insert Tools Desktop Window Help E

DedE K Rade € 08 80

Bode Diagram
From: force To: position

Magnitude (dB)

Phase (deg)

Frequency (rad/zec)

h

Figure 6.11 Bode diagram for the linearized systems at all test points from input force to mass position.

The corresponding step responses can be plotted using st ep

>> doe_result.step(1,1,[],"all");

134

Design of Experiments

File Edit View Insert Tools Desktop Window Help

DedE K RaM® ¢ 08 =0

Step Response
From: force To: position

Time (=ec)

Figure 6.12 Step response for the linearized systems at all test points from input force to mass position.
Steady-state values for each of the step responses are shown as dashed black lines.

If the number of experiments is large, the Bode plots and step responses may be slow to generate and visually
clutteredif all systemsare shown. Thebode and st ep methods have an option to plot the envel ope of step responses
and Bode diagrams. For this case, the curves are computed for all systemsbut only the onesthat have the maximum
or minimum value for some time/frequency are shown in the plot. For example,

>> doe_result.step(1,1,[]," envel ope');

generates the plot

135

Design of Experiments

File Edit View Insert Tools Desktop Window Help

DedE K RaM® ¢ 08 =0

Step Response
From: force To: position

Time (=ec)
Figure 6.13 Envelope of step responses for the linearized systems.
All step responses that are not shown lie entirely within the ones that are shown in the plot.

With only afew lines of code, it is possible to correlate some feature of the step response or Bode diagram to DoE
factors. The following code extracts the peak frequency for each Bode plot and correlates it to the DoE factors
in amain effects plot

peak_frequency = zeros(doe_result.doe.nbr_of experinents,1);
freq_vec = | ogspace(0, 1, 100); % search for the peak in
% the frequency
% range [1070, 1071]
for k=1:1:doe_result.doe. nbr_of experinents
[mag, phase] = bode(doe_result.linsys.sys{k}(1,1),freq_vec); % conpute mag and phase

% at these frequencies
[maxgai n, i ndmexfreq] = max(squeeze(nag)); % extract max gain and
% correspondi ng freq_vec
% i ndex
peak_frequency(k) = freq_vec(indmaxfreq); % store peak frequency
end
doe_resul t. mai n_ef f ect s(peak_frequency, ' peak freq'); % gener ate pl ot

136

Design of Experiments

B Figure 9 SRICEX
File Edit View Insert Tools Desktop Window Help k]l
DedE K RaM® ¢ 08 =0
FOI = 0.001402 FOI = 0.73637
3 T
*
. .O‘ +* 0’ 0.0 .:
8_ 2_5 * ’000 0” * ‘0
o A IRy
= + e+ PANEY
g 2 * + * “ 2 g
15 15
40 60 80 100 10 15 20
force mass.m
FOI = 0.29039
3 T
+*
00’ ?”. *
O’ "0 * N +
g 2-5 ‘; 0” * 4+ 0‘ " ” *
u— +* - ‘ A4 .0 ‘
ﬁ o ’00’: ‘3‘ k3
2 g ¢3¢
15
80 90 100 110 120
springDamper.c

Figure 6.14 Maximum-gain frequency plotted vs. DoE factors.

137

Chapter 7. Tutorial examples

7.1. Stabilization of a Furuta pendulum system

In this tutorial, you will go through the following steps using a tool for generating an FMU from modelica code
and FMI Toolbox. If you do not have an FMU generating tool from modelica code, skip step 3. A pre-compiled
FMU isincluded for convenience.

» Compile abinary model from Modelica code.
 Import the model in Simulink.
» Simulate aModelicamodel in Simulink with a simple control system.

For the tutorial, we will use a mechanical system called a Furuta pendulum, see [Jak2003]. The system is shown
inFigure 7.1.

Figure 7.1 The Furuta pendulum.

The angle of the pendulum, thetais defined to be zero when in upright position and positive when the pendulum is
moving clockwise. The angle of the arm, phi, is positive when the arm is moving in counter clockwise direction.
Further, the central vertical axis is connected to a DC motor which applies a torque proportional to the control
signal u. The Modelica code for the Furuta pendulum model is given by:

138

Tutorial examples

nodel Furuta

i mport SI = Mbdelica. Slunits;
paraneter SI.MmentOlnertia Jp
paraneter Sl.MnmentOflnertia Ja
paranmeter Sl.Length |p = 0.421;
paraneter Sl.Length | = (mpa/2
paraneter Sl.Mass M = 0.015;
paraneter Sl.Length r = 0.245;
paraneter Sl.Mass mpa = 0.02;
paraneter Sl.Acceleration g = 9.81;

(mpa/3 + M*Ip"2;
0. 00144;

4L

M/ (mpa + M*lp;

paraneter Sl.Angle theta 0 = 0.1;

paranmet er Sl. Angul arVel ocity dtheta 0 = 0;
paraneter Sl.Angle phi_0 = 0;

paranmet er SlI. Angul arVel ocity dphi _0 = 0;

output Sl.Angle theta(start=theta_0);

out put SI. Angul ar Vel ocity dtheta(start=dtheta_0);
out put Sl. Angl e phi(start=phi_0);

out put SI. Angul ar Vel ocity dphi (start=dphi_0);

i nput SlI. Torque u;

pr ot ect ed
par anet er Real
par anet er Real
par anet er Real
par anet er Real

Ja + (mpa + M*rnr2;
Jp;

(mpa + M*r*l;
(mpa + M*g*l;

o 0T

equati on
der (theta) = dtheta;
der (phi) = dphi;
c*der (dphi) *cos(theta) - b*dphi *2*sin(theta)*cos(theta) +
b*der (dtheta) - d*sin(theta) = 0;
c*der (dt heta)*cos(theta) - c*dtheta”2*sin(theta) +
2*b*dt het a*dphi *si n(t het a) *cos(theta) +
(a + b*sin(theta)”2)*der(dphi) = u;
end Furuta;

Note that the model iswritten on implicit form, i.e., the derivatives der(dphi) and der(dtheta) are given by asystem
of two equations.

7.1.1. Tutorial

1. Create anew folder on your hard drive, e.g., C:\ Fur ut a\

2. Copy the example files to the directory you just created. The example files are included in FMI Toolbox, in
the directory exanpl es\ me1\ Fur ut a under the installation directory. FMI Toolbox istypicaly located at C:
\ Program Fi | es\ Model on\ FM Tool box 1. 3. 1. Thefollowing files are needed:

139

Tutorial examples

e furuta.m

e Furuta.no

¢ Furuta.png

* Furuta_open_| oop. ndl

e Furuta_linearization.ndl

* Furuta_state_feedback. ndl

In order to use the Furuta model in Simulink, the model Furuta.mo, has to be compiled. Please generate an
FMU for Model Exchange version 1.0 with your FMU generating tool from modelica code. Make sure that
the FMU islocated in C:\ Fur ut a\ before you continue to the next step. Note that a pre-compiled FMU is

included in FMI Toolbox for convenience.

Start MATLAB, and make sure that the FM1 Toolbox is properly installed by adding the installation directory
to MATLAB's paths, see the Installation section for details. Next, type the command:

>> simulink

Open the file Fur ut a_open_| oop. ndl

B Furuta_cpen_loop * Eni |
Eile Edit Yiew Simulation Format Tools Help
D& {2 E= 4z 5o [Noma |

Ready [100% | | y

Figure7.2 A Simulink diagram with the Furuta pendulum.

140

Tutorial examples

The Furuta pendulum model is represented by an FMU block in the Simulink diagram, and Simulink Scopes
have been connected to the outputs. Press the simulation button and then open the scopest het a and phi . You
should now see plots like the ones below.

Figure 7.4 Simulation result for the phi angle [rad].

141

Tutorial examples

Next, open the FMU dialog by double clicking the FMU block. Inthe Parameters& Start valuestab, change
the value of the parameter t het a_0 from 0.1 to 1.3. This change corresponds to altering the start value of the
pendulum angle from almost upright position to ailmost aligned to the horizontal plane.

ru Furuta EIL |

| Parameters & start values | Outputs | Model Data | &dvanced Load FU...
Categary “ariakility Fixed Resat Al
es

Both - |Both - | Both -

(7) Flat view @) Tree view

W
-P Ja 0.00144
=P 1p 0.4z21
- P M 0.015
Sl A 0.245
-~ P m pa 0.0z

/P dphi_D

Description:

walle : 1.3|rad [Set Value i [Reset Value]

M Mae : ri i nfa Type : Real Reset All Values

Figure 7.5 Changing of parameter values of the Furuta FMU block.

Simulating the Simulink model again should give aresult like the one shown below.

142

Tutorial examples

Figure 7.7 Simulation result for the phi angle [rad].

Next, wewill linearize the pendulum inits upright position, in order to obtain alinear model to usefor control
design. Open the model Fur ut a_I i neari zati on. mdl .

143

Tutorial examples

B Furuta_linearization EIL |
File Edit View Simulation Format Tools Help
DI@E@I%@I¢¢?|DQ|> II'HJ.D INorrnaI jl

Ready [100% [[|odeds

Figure 7.8 The Simulink model used for linearizion of the Furuta model.

The linearizion commands below isfound in the f ur ut a. mscript. In order to linearize the model, we use the
MATLAB command | i nnod:

[AB,CD = linmod('Furuta_linearization',[0 0 0 0], [0])

The A, B, C and D matrices represent a linear state space model for the pendulum in its upright position. In
order to simplify the computations, we transform the model so that the ordering of the outputs correspond to
the ordering of the Furuta FMU block:

% Transform state vector to correspond to output ordering

A = C-A*inv(O
B =CB
C = Cinv(O

Finally, we design alinear quadratic state feedback controller using thel gr command from the Control Sys-
tems Toolbox. If Control Systems Toolbox is not installed on your system, comment the line with the | gr
command and uncomment the row below.

% Conpute a state feedback control |aw

Q = diag([100 10 1 0.25])

R = 100

L=1ar(ABQR

% = [-2.4263 -0.5189 -0.1000 -0.1179]

144

Tutorial examples

In order to run the script, type the following commands into your MATLAB shell:

>> cd C \Furuta
>> furuta

The state feedback control law has now been computed. Next, openthemodel Fur ut a_st at e_f eedback. mdl .

B Furuta_state_feedback [
File Edit View Simulation Format Tools Help
DFEE| fB2R|E= 4[5 r s [Nma B RS E

Furuts

S

Gain

A
]

I

Ready [100% [[oded5 Y

Figure 7.9 The Furuta state feedback Simulink model.

The model contains, apart from the Furuta FMU block, a state feedback control system where the reference
valuefor thearmangl e, phi , isasguarewave. Set the simulation time to 20s and simul ate the model. Opening

of the scopest het a and phi should give the following plots:

145

Tutorial examples

Figure 7.11 State feedback trajectory for the phi angle [rad].

7.1.1.1. Simulate Furuta model with co-simulation block

The Furuta pendulum can also be simulated with a Co-Simulation model. To to this, redo the tutorial above but in
step 2, copy the files found from the directory exanpl es\ cs1\ Fur ut a instead of exanpl es\ me1\ Fur ut a. In step

146

Tutorial examples

3, generate a Co-Simulation 1.0 FMU instead of Model Exchange 1.0. Note that these Simulink models uses the
FMU CS 1.0 block instead of the FMU ME 1. 0 block.

The simulation resultsfrom Fur ut a_st at e_f eedback. ndl model isgiven here. The scopest het a and phi should
give the following plots:

Figure 7.12 State feedback trajectory for the theta angle [rad].

147

Tutorial examples

Figure 7.13 State feedback trajectory for the phi angle [rad].

7.2. Vehicle dynamics model simulated in Simulink
with a driver

In this tutorial, you will go through the following steps using atool for generating an FMU from modelica code
and FMI Toolbox. If you do not have an FMU generating tool from modelica code, skip step 2. A pre-compiled
FMU isincluded for convenience.

e Compile alinear single-track vehicle model into an FMU

» Simulate the vehicle model in an open-loop experiment

» Useasimpledriver model to drive the vehicle model around a predefined path

148

Tutorial examples

W cucosdloon ——Ee
File Edit View Simulation Format Tools Help
b=zE&E = » 200 [Nomal - ¢

Driver

Ghobal v _x |

Global v_y

V_x
longitudinal_velacity
Velacity
¥ -
ing_angle —>| posout
¥ L

To Workspace

Ready 100% ode23

Figure 7.14 Simulating the FMU Car mode! in Simulink connected to a Driver block created in Simulink.

7.2.1. Tutorial

1. Setting up project
e To start, create afolder somewhere on your hard drive, e.g. C: \ Vehi cl eDynani cs

« Copy the example files to the directory you just created. The example files are located in the directory
exarpl es\ nel\ Vehi cl eDynani cs under the installation directory. The following files are needed:

e Car.no
* Car OpenLoop. mdl

* Car C osedLoop. ndl

If you do not have an FMU generating tool from modelica code, then also copy Car . f nu and go to step 3.

2. In order to use the Car model in Simulink, the model Car.mo, has to be compiled. Please generate an FMU
for Model Exchange version 1.0 with your FMU generation tool for modelica code. Make sure that the FMU
islocated in C:\ Vehi cl eDynami cs\ before you continue to the next step. Note that a pre-compiled FMU is
included in FMI Toolbox for convenience. The Modelica code for the Car model is given by:

nmodel Car "Linear single-track vehicle nodel"
paranet er Modelica. Slunits.Length | _f=1 "Distance fromfront axle to c.0.9.";

149

Tutorial examples

paranet er Mdelica. Slunits.Length | _r=1 "Distance fromrear axle to c.0.9.";
par anet er Mbdel i ca. Sl units. Mass m=1000 " Mass";
paraneter Mdelica.Slunits.Inertia i_zz=2500
"Monent of inertia around vertical axis";
paraneter Real C _f=100000 "Front axle cornering stiffness";
paranet er Real C r=100000 "Rear axle cornering stiffness";
paraneter Real k_sw=1 "Steering gain";

i nput Mbodel i ca. Bl ocks. | nterfaces. Real | nput steering_angle
"Steering wheel angle input";

i nput Model i ca. Bl ocks. I nterfaces. Real | nput | ongitudi nal _vel ocity
"Longi tudi nal velocity input";

Model i ca. Slunits. Angl e al pha_f "Front slip angle";

Model i ca. Slunits. Angl e al pha_r "Rear slip angle";

Model i ca. Slunits. Force f_y f "Front axle lateral force";
Modelica. Slunits. Force f_y r "Rear axle |lateral force";
Model i ca. Sl uni ts. Angul ar Vel ocity w z "Yaw rate";

Model i ca. Slunits. Position p_z "Yaw angl e";

Modelica. Slunits. Velocity v_y "Lateral velocity";

Model i ca. Slunits. Vel ocity v_x "Longitudinal velocity";
Model i ca. Slunits. Accel eration a_y "Lateral accel eration”;

Model i ca. Sl units. Angl e del ta=k_sw*steering_angl e "Steering angl e at wheel s";

out put Mbddelica.Slunits.Position r_x "d obal X position";
out put Mddelica.Slunits.Position r_y "d obal Y position";

out put Mddelica.Slunits.Velocity V_x "d obal X velocity";
out put Mbddelica.Slunits.Velocity V.y "Aobal Y velocity";

equati on
v_x = max(0. 1, | ongitudinal _velocity) "Avoid division by zero for |ow speeds";

al pha_f = (-v_y-1_f*w z)/v_x+delta "Front axle slip angle (assum ng small angles)";
alpha_r = (-v_y+l _r*w z)/v_x "Rear axle slip angle (assum ng small angles)";

f yf =Cf*alpha f "Front axle lateral force";

f_yr = Cr*alpha_r "Rear axle lateral force";

ay = der(v_y)+v_x*w z "Lateral acceleration";

nfay =f y f+f y r "Lateral force bal ance";
i_zz*der(w_z) =1 _f*f_y f-1_r*f_y r "Torque bal ance around vertical axis";

der(p_z) = w_z "Yaw angl e out put";
V_x=v_x*cos(p_z)-v_y*sin(p_z) "dobal X velocity output";

V_y=v_x*sin(p_z)+v_y*cos(p_z) "G obal Y velocity output";
der(r_x)=V_x "d obal X position output";

150

Tutorial examples

der(r_y)=V_y "G obal Y position output";
end Car;

Simulate the model in Simulink
¢ In Simulink, open the model Car OpenLoop. ndl from your project directory.

* A step steer maneuver is prepared with a constant velocity input and some outputs have been selected and
routed into a scope block. Simulate the model and you should see the following plots in the scope:

151

Tutorial examples

rus::ope / l‘:'@ﬂﬁ
SEPLL ARBREBE DA R ~

Slip angles

Bl | SR S

Lateral welocity

eration

“r'aw rate

Time offset. 0

Figure 7.15 Simulation results for Car OpenLoop. mdl

152

Tutorial examples

4,

Closed loop simulation in Simulink

« Now open Car d osedLoop. mdl instead. Here the vehicle model is connected to a driver model with a
simple path tracking controller. The path to follow is defined as a distance-curvature interpolation table:

Table 7.1 Distance-curvature interpolation table of the path for the driver to follow

Distance along path Curvature
0 0
50 0
50+50 1/200
50+2* pi* 200 1/200
50+2* pi* 200+50 -1/100
50+2* pi* 200+2* pi* 100 -1/100

¢ Inthe experiment, the path is defined as two full circleswith two different curve radii. First aleft turn with
r=200m then aright turn with r=100m. A 50m transition distance is used when changing curvature.

¢ Simulate the model.

« Toplot the position of the vehicle the following commands can be used:

figure;

pl ot (posout . si gnal s. val ues(:, 1), posout. si gnal s. val ues(:, 2));

axi s equal ;

The following plot should appear:

153

Tutorial examples

- .
n Figure 1 EE‘
Eile Edit View Inset Tools Desktop Window Help b

NS KRN UDRL- |08 a0

400 T

300

200

100

-100 1

200 1 1 1 I I
-300 -200 =100 0 100 200 300 400

Figure 7.16 Vehicle position

« Inthe parameter dialog of the FMU block, add outputsfor lateral acceleration (a_y) and yaw rate (w_z) and
add scopes to view the output. After ssmulating, you should see the following plots:

154

Tutorial examples

Time offset: 0

Figure 7.17 Plot of lateral acceleration [m/s?]

B e

EXENESEE R

0.1
0.05 : :
o NN IO ST
DOFE e b
o1tk . SRR SRR

045 B T

100 150

Time offset: 0

Figure 7.18 Plot of vehicle yaw rate [rad/s]

155

Chapter 8. Limitations

This page lists the current limitations of the FMI Toolbox.

8.1. Simulink FMU block

e Theinput and output port does not support strings.

« For large models (above 30 thousand variables, depending on the computer), the tree viewsin the GUI may take
long time to draw. It is recommended to use the structured tree view and not the flat view.

¢ Co-Simulation FMUs with model Description attribute canRunAsynchronuously set to true are not supported.
* When Simulink Coder/Real-Time Workshop buildsamodel containing multiple FMU blocks, interference may
occur due multiple source code FMUs may include different files with the same name using the #include <...>

include directive.

» Simulating with Rapid Accelerator Mode is not supported when using FMU blocks.

8.2. MATLAB FMU Classes

» DOE analysisis not supported for Model Exchange 2.0 FMUs.
* No analytical Jacobain will be used when simulating Model Exchange 2.0 FMUSs.

e The FMI functions fmi2GetFMUstate, fmi2SetFMUstate, fmi2FreeFMUstate, fmi2SerializedFM UstateSize,
fmi2SerilizeFM Ustate and fmi2DeSerializeFM Ustate are not implemented.

« It is not possible to access the dependency information of variables present in the Model Structure tag in the
XML for 2.0 FMUs.

8.3. FMU Export

8.3.1. Common target

» Complex input and output ports are not supported. There is no corresponding data type in the FMI standard.
Complex parameters will not be exposed in the FMU.

* Fixed-point input and output ports are not supported. There is no corresponding data type in the FMI standard.
Fixed-point parameters will not be exposed in the FMU.

156

Limitations

 Discrete variables (variability attribute set to discrete) may change value at instants other than during initializa-

tion or at event instants.

» Start values NaN and Inf are not supported for exposed parameters.

In Table 8.1 unsupported blocks or blocks with restricted usage are listed. For afull list with blocks that have been

tested, see Section 5.10.

Table 8.1 Unsupported or restrictions on blocks

Block

Comment

simulink/Continuous/Variable Time Delay

Partial supported. Generates different results.

simulink/Continuous/V ariable Transport Delay

Partial supported. Generates different results.

simulink/Continuous/Derivative

Partial supported. Derivative approximation is depen-
dent on the length of the integrator step which causes
the results to be different.

simulink/Discontinuities/Backlash

Partial supported. Generates different results.

simulink/Math Operations/Weighted Sample Time
Math

Not supported when continuous sample times are used.
See note®

simulink/Math Operations/Algebraic Constraint

Not supported. Algebraic loops are not supported in
generated code.

simulink/Model Verification/Check Discrete Gradient

See note 2. Requires fixed-step solver, see note °.

simulink/Model-Wide Utilities/Trigger-Based Lin-
earization

Not supported, see note °.

simulink/Model-Wide Utilities/Timed-Based Lin-
earization

Not supported, see note °.

simulink/Ports & Subsystems/M odel

Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/Model Variants

Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/Variant Subsystem

Not supported. FMU target is not model reference
compliant.

simulink/Ports & Subsystems/For Each Subsystem

Not supported for Model Exchange, see note d

simulink/Sinks/To File

Supports only "Save format" set to Array. TimeSeries
are not supported by Simulink Coder/Real-Time Work-
shop generated code.

simulink/Sources/Enumerated Constant

Not supported. Enumerator is not supported by the tar-
get.

157

Limitations

Block

Comment

simulink/Sources/Pul se Generator

Uses a variable sample time, see note ©.

simulink/Sources/Counter Free-Running

Due to the nature of the block, the output depends on
how many times the FMI functions are called which
varies between different FMI import tools and solver
settings.

simulink/User-Defined Functions MATLAB Fcn (re-
named in 201143, see Interpreted MATLAB Function)

Not supported. Not yet supported by Real-Time Work-
shop/Simulink Coder.

simulink/User-Defined Functiong/Interpreted MAT-
LAB Function (new since 2011a)

Not supported. Not yet supported by Real-Time Work-
shop.

simulink/User-Defined Functions/S-Function Builder

Supported if TLC file is generated.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fen Direct Form |1

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Transfer Fcn Direct Form |1 Time Varying

Use discrete sample time.

simulink/Additional Math & Discrete/Additional Dis-
crete/Fixed-Point State-Space

Use discrete sample time.

ot supported by the S-function CodeFormat which the the FMU target is derived from.
BLimited by the S-function CodeFormat which the the FMU target is derived from.
°TLC-filefor the block is missing. Code for the block cannot be generated.

9Block is not supported for generation of a Simulink Coder/Real-Time Workshop target.
®Not supported by the S-function CodeFormat which the the FMU target is derived from.

8.3.2. Model Export target

» The Model Exchangetarget usesthe code format S-function and target type non real time. Thismeansin general
that the same limitations of Simulink Coder”s native S-function target, rtwsfcn is applied to the FM U target. For
more information about S-function generation limitations, go to http://www.mathworks.se/hel p/rtw/ug/generat-
ed-s-function-block-deployment.html.

8.3.3. Co-Simulation target

» Only Fixed-step solvers are supported.

» Support for precompiled S-functionsis only supported for export of Model Exchange FMUs.

158

http://www.mathworks.se/help/rtw/ug/generated-s-function-block-deployment.html
http://www.mathworks.se/help/rtw/ug/generated-s-function-block-deployment.html

Chapter 9. License installation

9.1. Retrieving a license file

There are different types of license models that can be used with Modelon products.
» Node-locked (No license server required)

Thislicense enables use on asingle computer. The license cannot be moved from one computer to another. The
license islocked for use on a computer with a specific MAC address.

» Server (Requires alicense server)

This licensing model represents a classic network configuration with a server and users. The server grants or
denies requests from computers in the network to use a program or feature. The license file specifies the maxi-
mum number of concurrent users for a program or feature. There is no restriction for which computer is using
the program or feature, only in the number of programs and features that can be used simultaneously.

The computer on which the server is running cannot be changed. The server computer's MAC address must be
provided to Modelon to generate the license file.

» Evaluation license (Node Locked)
Thislicense enables a program or feature for alimited amount of time and is the same as a node-locked license.

Please contact the Model on sales department at <sal es@rodel on. core to purchasealicense or to get an evaluation
license. In order to obtain a license file for a node-locked license, you must provide the MAC address of your
computer. If you are using a license server, you must provide the MAC address of the server. In Section 9.1.1
below, you will find instructions for how to retrieve the MAC address of a computer.

9.1.1. Get MAC address

Modelon usesthe Ethernet address (MAC address), also called the host I D, to uniquely identify aspecific computer.
Therefore, you must provide the MAC address of the computer on which you want to use the program or feature.
For aserver license, the MAC addressfor the server computer isrequired, not all the client computersin the network
that will use the program or feature. For a node-locked license, the MAC address of the computer on which the
license will be used must be provided.

Note: Modelon only allows ONE MAC address for each computer. Please disable and unplug all network devices
that are not permanently connected to the computer such as laptop docking stations, virtual machines and USB
network cards.

159

Licenseinstalation

* Windows
1. Opencmd
Windows 7 and Vista

a. Click the Start button
b. Type cmd in the search bar and press enter.
Windows XP
a Click the Start button.
b. Click on Run....
c. Typecmd inthetext box and click OK.
2. Runl nhosti d. exe

Type the full path to Imhostid.exe within quotes and press enter. | nhost i d. exe isnormally located in <i n-
stallation folder>\license_tool s\Inhostid. exe.

3. Usethishostid when you arein contact with Modelon. If multiple hostids are listed, select onethat is perma-
nent for the computer.

A\WINDOWS\system32\cmd.exe

IC:~>"C:\Program Files“Modelon“~FMI Toolbox 1.3.1%~license_tools“\lmhostid.exe"
Imhostid — Copyright {c> 1989-2011 Flepero-fvlivwarer=inc. All Rights Reserved.
The FLERnet host ID of this machine is| “BB2219175874"

HER

Figure 9.1 Lmhostid.exe run on Windows listing the computer's MAC address.
* Unix

1. Open aterminal and change directory to the<i nstal l ation fol der>/1icense_tool s/.

160

Licenseinstalation

Run I mhost i d and use the hostid listed when you are in contact with Modelon. If multiple hostids are listed,
select one that is permanent for the computer.

9.2. Install a license

After purchasing alicense, you should receive a license file with the file extension *. 1'i ¢. This file must be put
in a specific folder for the application to find it.

9.2.1. Installing a node-locked license

9.2.1.1. Windows
1. Closethe application if it isalready running.
2. Open the Application Data folder.
Windows 7 and Windows Vista
a Click the Start button.
b. Typeshel | : AppDat a in the search bar and press enter.
Windows XP
a Click the Start button.
b. Click onRun....
c. Typeshel | : AppDat a in the text box and click OK.

3. The Application Data folder should now be open. Check that its path is of the form C:\Users\YourUser-
Name\AppData\Roaming.

4. Createthefolder Mbdel on\ Li censes\ Nodel ocked if it does not exist already.
5. Putyour licensefilein the folder Nodel ocked.

9.2.1.2. Unix

e Copy your licensefileto thefolder <i nst al | ati on fol der >\ Li censes\ Nodel ocked.

161

Licenseinstalation

9.2.1.3. Updating the license
To updatethelicensefile, you should overwrite the old licensefile with the new one. Ensurethat the old licensefile

isoverwritten or removed from the folder sinceit may otherwise be used instead of the new one, and the application
may fail to check out alicense. Note that you must restart the program for license changes to take effect.

9.2.2. Installing a server license

Note that these are not instructions for installing a license file on a server. These are instructions for the end user
of the program or feature. The assumption isthat the server isaready up and running and that the | P address to the
server and the port number is already known. The IP address and the port number, if needed, should be provided
by the license server administrator.

The application can connect to the license-server and daemon either by reading a license file or an environment
variable.

9.2.2.1. Windows
1. Closethe applicationif it is already running.
2. Create an empty text file
Windows 7 and Windows Vista
a. Click the Start button.
b. Type Not epad in the search bar and press enter.
Windows XP
a. Click the Start button.
b. Click onRun....
c. Type Not epad in the text box and click OK.
3. Configure thelicensefile.

a. Copy thefollowing text in to the text document

SERVER <i p- addr ess> ANY <port >
USE_SERVER

b. Change <i p- addr ess> to the |P address of the server.
162

Licenseinstalation

c. Change <por t > to the port number that is being used. If you do not have a port number, you can remove
the whole <por t >. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192. 168. 0. 12 ANY 1200
USE_SERVER

d. Save the file with afilename with the extension *. | i ¢ in atemporary place. The file will be moved in a
later step. Y ou can now close Notepad.

4. Open the Application Data folder.
Windows 7 and Windows Vista
a. Click the Start button.
b. Typeshel | : AppDat a in the search bar and press enter.
Windows XP
a Click the Start button.
b. Click onRun....
c. Typeshel | : AppDat a in the text box and click OK.
The Application Data folder should now open.
5. Createthefolder Model on\ Li censes\ Server if it does not exist already.

6. Putthelicensefileyou just created in the folder Server.

9.2.2.2. Unix

1. Closethe program if it isalready running.

2. Create an empty file with the file extension name*. 1 i c.
3. Configurethelicensefile.

a. Copy the following text in to the text document

SERVER <i p- address> ANY <port>
USE_SERVER

b. Change <i p- addr ess> to the P address of the server.

163

Licenseinstalation

c. Change <por t > to the port number that is being used. If you do not have a port number, you can remove
the whole <por t >. For example, the license file should look like the following for a license server with
IP address 192.168.0.12 using port 1200.

SERVER 192.168. 0. 12 ANY 1200
USE_SERVER

4. Copy your licensefileto thefolder <i nstal | ati on fol der >\ Li censes\ Server.
9.2.2.3. Using the environment variable

An aternative to specify how the application should connect to the license server isto set the environment variable
MODELON_LICENSE_FILE. Thevalue can be set to port@host, where port and host are the TCP/IP port number
and host name from the SERVER linein thelicensefile. Alternatively, use the shortcut specification, @host, if the
license file SERVER line uses a default TCP/IP port or specifies a port in the default port range (27000—27009).

9.2.2.4. Updating the license

To update the license file, you can either redo the installation instructions described above or make the changes
in the license file directly. Ensure that the old license file is overwritten or removed from the folder since it may
otherwise be used instead of the new one, and the application may fail to check out alicense. Note that you must
restart the program before the changes can take effect.

9.3. Installing a license server

To install a license server, you must have a server license file. Please contact <sal es@mwdel on. con» to obtain
the server license file. This license file must also be configured prior to use by by setting the | P address and port
as shown in Section 9.3.1

Modelon products use a licensing solution provided by Flexera Software. It is recommended that you install the
latest version of the server software, which is available from http://learn.flexerasoftware.com/content/EL O-L M-
GRD . Modelon products require alicense server version number v11.10.0.0 or later. A license server and alicense
daemon are required and are distributed with the product you are installing. If you have not received the server
application or license daemon with your product, please contact <sal es@odel on. conp.

The following step by step instructions for installing a license server assume that no other Flexera license server
isaready installed.

9.3.1. Configure the license file

When alicense server isinstalled, the server needs alicensefile provided by Modelon. Thisfile must be configured
before it can be used.

164

http://learn.flexerasoftware.com/content/ELO-LMGRD
http://learn.flexerasoftware.com/content/ELO-LMGRD

Licenseinstalation

Open thelicense filein atext editor. The file may look like the example below:

SERVER 192. 168. 0.1 080027004ca5 25012
VENDOR nodel on
FEATURE FM _TOOLBOX nodel on 1.0 3-feb-2012 12 SI G\N="0076 305..."

Edit the SERVER line where the IP address, 192. 168. 0. 1, should be replaced with the IP address of the
server. Also change the port address, 25012, to the desired port or remove it to use default ports. The IP
address and potentially also the port address should be provided to the end users so they can configure their
license files to connect to the server.

9.3.2. Installation on Windows

Inthe <installation fol der>\1icense_tool s folder that is distributed with your product, you will find the
fileslisted below.

The listed files are used to set up and configure the license server.

» Imgrd.exe (license server)

» modelon.exe (license daemon)

« Imutils.exe (configure- and utility functions)

* Imtools.exe (Windows GUI for setting up the license server as a Windows service)

To configure alicense server manager (1 ngr d) as a service, you must have Administrator privileges. The service
will run under the Local System account. This account is required to run this utility as a service.

1.

2.

Make sure that license daemon nodel on. exe isin the same folder asthe license server, | ngr d. exe.

Run| nt ool s. exe

. Click the Configuration using Services button, and then click the Config Services tab.

. In the Service Name, type the name of the service that you want to define, for example, Model on Li cense

Server.

. Inthe Path to the Imgrd.exefilefield, enter or browseto | ngr d. exe.
. Inthe Path to thelicensefilefield, enter or browse to the server licensefile.

. In the Path to the debug log file, enter or browse to the debug log file that this license server should write.

Prepending the debug log file name with the + character appends logging entries. The default location for the
debug log fileisthec: \ wi nnt\ Syst en82 f ol der. To specify a different location, be careful to specify afully
qualified path.

165

Licenseinstalation

8. Make thislicense server manager a Windows service by selecting the Use Ser vices check box.

9. Optional. Configure the license server to start at system startup time by selecting the Start Server at Power
Up check box.

10.To save the new Mbdel on Li cense Server service, click Save Service.

File Edit Mode Help

] Barrowing]

Save Service
Service Mame |M0de|0n Licenze Server hd
Remove Service

Path ta the Imgrd.exe fils |E:'\F'rogram Files\Modelan Cornmamn'flextoolzlm m

- - Browse
Path to the license file |E:'\I|cense.||c 4

Fath ta the debug log file |E:'\temp'\fle:<log.lng Browse | Wiew Lng...l

Configure Service

[Start Server at Power Up [¥ Use Services

Figure 9.2 Setup the license server with Imtools.exe

11.Click the Service/License File tab. Select the service name from the list presented in the selection box. In this
example, the service nameis Model on Li cense Server.

12.Click the Start/Stop/Reread tab.

13.Start Model on Li cense Server by clicking the Start Server button. Model on Li cense Server license server
starts and writes its debug log output to the file specified in the Config Servicestab.

9.3.3. Installation on Unix

Inthe<instal l ation fol der>\Iicense_t ool s folder that is distributed with the product, you can find the files
listed below.

« Imgrd (license server)

» modelon (license daemon)

166

Licenseinstalation

 Imutil (configure- and utility functions)

Before you start the license server, Imgrd, make sure that license daemon modelon is in the same folder.
Start I mgr d from the UNIX command line using the following syntax:

Imgrd -c license _file_ list -L [+] debug_| og_path

wherelicense_file_list iseither thefull path to alicense file or adirectory containing license files where all
filesnamed*. Ii c areused. If thelicense file list value contains more than onelicensefile or directory, they must
be separated by colons. debug_I og_pat h isthe full path to the debug log file. Prepending debug_I og_pat h with
the + character appends logging entries.

Starting | mgr d from a root account my introduce security risks, and it is therefore recommended that a non-root
account is used instead. If | mgr d must be started by the root user, use the su command to run | ngrd as a non-
privileged user:

su username -c¢ "lngrd -c license_file list -1 debug_l og_path"

Ensure that the vendor daemons listed in the license file have execute permissions for user nane.

9.4. Troubleshooting license installation

If you experience any problemswith the license, the error messages are usually descriptive enough to provide hints
asto the root cause of the problem. If the problem persists, please contact Modelon at <suppor t @odel on. cone.
Before contacting Modelon, support you should run | ndi ag and provide the resulting information. Follow the
instructions below to run | ndi ag.

9.4.1. Running Imdiag

* Windows
1. Opencmd
Windows 7 and Vista

a. Click the Start button.

b. Type cmd in the search bar and press enter.
Windows XP

a Click the Start button.

b. Click on Run....

167

Licenseinstalation

c. Typecmd in the text box and click OK.
2. Runl ndi ag. exe.

Type the full path to | ndi ag. exe within quotes and press enter. | mdi ag. exe ishormally located in <i n-
stallation fol der>\Iicense_tool s\Indi ag. exe.

* Unix
e Openatermina and change directory tothe<i nstal | ati on fol der>/1icense_tool s/.
Run | ndi ag withthe. /I nutil | ndi ag command.
Note: I muti | requires LSB (Linux Standard Base) compliance to run. Some distributions, e.g. Ubuntu, do not

have LSB compliance by default and can thus not run the program. . /1 nut i I then fails with a message like

$> ./lmtil |ndiag
bash: ./lmutil: No such file or directory

If this error occurs, please check if the required interpreter is installed on your system. The requirement can be
found with ther eadel f command, and the output should look similar to

$> readelf -a lmutil | grep interpreter
[Requesting programinterpreter: /lib64/1d-1sb-x86-64.so. 3]

L SB should be available for install through a package manager. If installing it is not an alternative, a quick fix
isto symlink the required interpreter to the one on your system, i.e.

$> In -s <your |d> <required |d>

Note 2: FlexLM requires that network devices are named eth0, ethl, etc. When other namesare used, | mhost i d
will alwaysreturn 0 as host 1D. Device names can be shown with thei f conf i g command. If your Linux distri-
bution uses a different naming scheme, it needs to be changed. The steps to change the naming scheme depend
on the distribution and release.

168

Chapter 10. Release notes
10.1. Release 2.6.4

» Added support for MATLAB 2018a
» Due to a glibc bug that exists for the glibc of Ubuntu 14.04 MATLAB 2018a is currently not supported
on Linux (Ubuntu 14.04), the related bug report can be found at: https://bugs.|aunchpad.net/ubuntu/+source/
eglibc/+bug/1695080.

* Other minor improvements and bug fixes.

10.2. Release 2.6.3

» Added support for MATLAB 2017b.

¢ Added the new FMU block optionsusest at i cLi braryl nCodeGener ati on andst at i cLi br ar yPat hFor Code-
Gener at i on. These allow using custom FMU binaries when using Simulink Coder. For more information use
hel p fnuSet Opti onSi nul i nk in MATLAB.

* For the tablesin Section 5.10, compatibility with the FMU targets was added for the following blocks:
* Argument Inport
* Argument Outport
» Function Caller
* Matlab System
» Simulink Function
» Event listener
* Initialize Function
* Reset Function
o State Reader
o State Writer
» Terminate Function

« Other minor improvements.

10.3. Release 2.6.2

» Added support for Visual Studio 2013.

* Fixed bug where the wrong FMU resource path was used by the FMU block when simulating in Accelerator
mode.

* Other minor improvements.

169

https://bugs.launchpad.net/ubuntu/+source/eglibc/+bug/1695080
https://bugs.launchpad.net/ubuntu/+source/eglibc/+bug/1695080

Release notes

10.4. Release 2.6.1

Added support for MATLAB 2017a.
Fixed bug where adding outputsin the FMU Block GUI failed.

Other minor improvements.

10.5. Release 2.6

Better support and documentation for using the FMU block with Simulink Coder targets, see Section 3.4.
Improved performance for Simulating Model Exchange 2.0 FMUs using the mex interface.

Updated the FMI Library version to 2.0.2.

Added warning for not creating string portswhen loading an FM U with string inputs/outputsinto an FMU block.

Improved logging for the FMU block. Ensured that for MATLAB 2015b and forward logging is done in the
Diagnostic Viewer when using the GUI, otherwise to the MATLAB prompt.

Other improvements and bug fixes.

10.6. Release 2.5

Added support for Exporting FMUs on Linux. See Section 2.2.1.2 for details.
It isno longer necessary to configure a zip tool. A default implementation in Javais now available.

Added trim and linearize to FMUModelME2 class, also improved the FMUModel M E1 implementations with
better interface and documentation.

Note: The FMIToolbox 2.5.x releases will be the last to have support for Windows XP, Ubuntu 8.04, Ubuntu
11.04 and early versions of MATLAB. FMIToolbox 2.6 will support MATLAB 2010b (32-bit and 64-bit) and
forward on Windows (7 and 10) and MATLAB 2015a (64-bit) and forward on Linux (64-bit).

Other improvements and bug fixes.

10.7. Release 2.4

Added support for MATLAB 2016a and 2016b.

Added support for Visua Studio 2012 and Visual Studio 2015.

170

Release notes

Added the FMU export option Includeinter nal signals. When enabled, internal signalswill be availablein the
exported FMU. See Section 5.8 for more information.

Removed the vector sizes from the vector names for ports in FMU blocks when loading an FMU. Reloading
the FMU for ablock will not change the naming. For example the names for the vector with FMI names"a[1]",
"a[2]", "a[3]" will now have the block port name"a" rather than "a[3]".

Most of the scripting functionsfor the FMU block (see Section 3.3.8) now worksfor FMU blockswith structured
ports activated. Improved error handling for calling the scripting functions with blocks not valid.

Other improvements and bug fixes.

10.8. Release 2.3.3

Better support for removing algebraic loops using dependency data. New FMU blocks will use this by default.
The option useDi r ect Feedt hr oughDat a can be used for old blocks.

Unconnected inputs of FMU blocks now behave as if the Ground block was connected to it, meaning that the
input will be azero value.

10.9. Release 2.3.2

Support for FMU Model Exchange export from Simulink with Global (tunable) parameters.
Added full support for MATLAB 2015b.

Sincether evert I nl i nePar anet er sOf f To2013b command isremoved in MATLAB 2015b, itisno longer used
in FMU Model Exchange export.

Exported FMUs of Simulink modelswill now have parameters with names that reflect the models structure, see
Chapter Section 5.7.

The structured names of the inputs and outputs of exported FMUswill now always be legal FMI names (unique
and with no illegal characters).

Fixed bug where modifying a copied FMU block with structured ports would change the original FMU block.

10.10. Release 2.3.1

Tunable parameters are now supported for FMU Co-Simulation 2.0 export.
Added support for MATLAB 2015b with the exception of the targets fmu_mel.tlc and fmu_me2.tlc.

Added the methods getMin, getMax and getNominal to the ScarlarVariablel class.

171

Release notes

» Fixed a bug causing the fmiGetXXX functions in the FMI 1.0 MEX interface to return values with wrong
dimensions.

 Other improvements and bug fixes.

10.11. Release 2.3

 Support for FMU Model Exchange 2.0 export from Simulink.

 Changed behavior for Stop Simulation blocks when exporting Co-Simulation and Model Exchange FMUs. They
now cause the simulation to stop without an error (Model verification blocks still causes stops with an error).

* Improved performance of ScalarVariablel methods.

e Exported Co-Simulation FMUs now support variable communication points. Capability added to
model Description.xml: canHandl eVar i abl eConmuni cat i onTi meSt ep="tr ue".

* Fixed abug affecting S-Functions with row vector parameters.

10.12. Release 2.2.1

» Added optional argument to ScalarVariablel.directDependency to check dependency only on specified input
variables. This greatly improves performance.

* Fixed abug where simulation of imported FMU:s would not work when using interpolated input signals.

10.13. Release 2.2

 Support for loading and simulating 2.0 FMUs in MATLAB. See Chapter 8 for what is not yet implemented.
* New methods set and get for the MATLAB interface, setValue and getValue is deprecated.

» Added support for MATLAB 2015a.

10.14. Release 2.1

 Support for FMU Co-Simulation 2.0 export from Simulink.

» FMU blocksare now inlined when loaded with 2.0 FMUs and are then supported by Simulink Coder/Real-Time
workshop.

10.15. Release 2.0.1

 Better handling of finding resources for exported Co-Simulation and Model Exchange FMUs.

172

Release notes

10.16. Release 2.0

Support for loading and simulating 2.0 FMUs with the FM U blocks.
Optimized the time for loading large FMUs into the FMU blocks.
Optimized the time for opening the GUI of the FMU blocks loaded with alarge FMU.

Write simulation result to file and the Logger drop down menu in the GUI have been moved from the Ad-
vanced tab to the new L og tab.

Other improvements and bug fixes.

10.17. Release 1.9

Added support for MATLAB 2014aand MATLAB 2014b.

From MATLAB 2014aand later, FMU Model Exchange export callsrevertlnlineParameter sOffToR2013b. See
MATLAB 2014arelease notes for details regarding implication of this function call.

Changed linger time from 30 minutesto 2 minutesfor FM | Toolbox Coder add-on. Changed linger time from
0 minutesto 2 minutes for FM| Toolbox license.

Updated MATLAB class constructors FMUModelME1, FMUModelCS1 and loadFMU to take arguments for
setting log file name and instance name. The new interface use name value pair arguments. The old interface
for setting log level is deprecated.

New method getScalarVariable added. It returns a ScalarVariablel class given avariable name.
New method getlnstanceName added. It returns the instance name.

New method getL ogFilePath added. It returns the full log file path.

New method getFM UFilePath added. It returns the full FMU file path.

Improved simulation time for FMUModel CS1’s simulate function. Use of the old simulate function is depre-
cated.

Other improvements.

10.18. Release 1.8.6

 Support for Accelerator mode using the FMI blocks.

173

Release notes

» Other improvements and bug fixes.

10.19. Release 1.8.5

 Fix for amemory leak.

10.20. Release 1.8.4

* Support enumerations for Co-Simulation and Model Exchange export.

» Unsupported data types for parameters does no longer give an error when exporting an FMU, now a warning
is given and the parameter is not exposed by the FMU.

» Exported FMUs of Simulink models with bus outputs will use the signal labels of these buses to construct
structured names for the outputs in the FMU.

* When importing FMUs in Simulink with structured names it is possible to use structured naming of the in-
puts/outputs. These inputs/outputs will then be buses with signal 1abels based on the structural naming.

* Modéel verification blocks and Stop Simulation blocks now causes exported Co-Simulation and M odel Exchange
FMUs to stop the simulation when these are triggered.

10.21. Release 1.8.3

» Sample and offset time for the Co-Simulation block can be set to symbols that are evaluated by Simulink at
simulation time.

* Support for FMU Co-Simulation export from Simulink with Global (tunable) parameters.

 Other improvements and bug fixes.

10.22. Release 1.8.2

* When building simulink models with FMU blocks, the FMUs shared library can now be used.
» Updated getModelV ariables method in the FMU classes. It now supports filtering on variable names.

» New method directDependency added to ScalarVariablel class. It returns a list of al the direct dependencies
defined by the FMU for a particular output variable.

» New factory function loadFMU. It creates an instance of one of the supported FMU classes.

* New FMU block script function added fmuGetInputPortsSimulink. It returnstheinput portsfrom an FMU block.

174

Release notes

New FMU block script function added fmuGetModel DataSimulink. It returns model data.
New FMU block script function added fmuGetOptionSimulink. It returns an FMU block option.

New FMU block script function added fmuGetOutputPortsSimulink. It returns the output ports from an FMU
block.

New FMU block script function added fmuGetVaueSimulink. It returns the start value for avariable.
New FMU block script function added fmuResetAll OutputPortsSimulink. It resets all output ports to default.

New FMU block script function added fmuResetAllSimulink. It resets all parameter and start values, and all
output ports.

New FMU block script function added fmuSetOptionSimulink. It sets an FMU block option.
New FMU block script function added fmuSetOutputPortsSimulink. It sets the output ports for an FMU block.

Other improvements and bug fixes.

10.23. Release 1.8.1

MATLAB interface now have an improved API. To get Alias base, units, displayUnits and multiple values are
now supported.

MATLAB interface now provide the functionality to forward log messages from FMU to a user provided log
listener in MATLAB.

MATLAB interface now have native and effective support for arrays of variables.

10.24. Release 1.8

Simulink blocks from FMI Toolbox support dSPACE’s rti 1006.tlc target.
New FMU block script function added fmuResetAllValuesSimulink. It resets all parameter and start val ues.

New FMU block script function added fmuResetV alueSimulink. It resets one or multiple parameter and start
values.

New FMU block script function added fmuReloadFMUSimulink. It reloads an FMU block.
New FMU block script function added fmuLoadFMUSimulink. It loads an FMU block with an FMU file.

Changed name of the function fmi_toolbox_lic_info to fmitoolbox_license.

175

Release notes

Changed default valuein the Model Exchange Simulink block. The Advanced setting Use tolerance controlled
FMU isnow disabled by default.

Changed default value for the Simulink blocks. The Advanced setting Add new output portswhen the model
isreloaded is now disabled by defaullt.

FMU Model Exchange export target, fmu_mel, now supports linkage of existing S-function object files.

Bug fixes.

10.25. Release 1.7.2

Improved handling of event indicator functions for FMU export.
Bug fix: Setting string parameter values triggered an error in Simulink.

Other improvements and bug fixes.

10.26. Release 1.7.1

Bug fix: Failed to link the FMU target object files properly.

10.27. Release 1.7

Support for FMU Co-Simulation 1.0 export from Simulink.

Simulink blocks are now supported by Simulink Coder.

Mask parameters can now be used to set start values.

Improved handling of the FMU blocksin a Simulink library.

If the FMU block islocated in alibrary(other than itself) the relative path optionsis now relative to thislibrary.

Many other improvements and bug fixes.

10.28. Release 1.6.1

FMU export can now generate FMUs containing non-inlined S-functions(e.g DLL only).
Improved direct dependency analysisin the FMU export.

FMU import supports vector input ports.

176

Release notes

* FMU import supports tool based Co-Simulation FMUs.

10.29. Release 1.6

* Support for static and dynamic analysis of FMUs through design-of-experiments (DoE) .
» General toolbox updates for better integration in MATLAB.

* New Windows installer for both 32- and 64-bit MATLAB.

» New Linux package for both 32- and 64-bit MATLAB.

 Unattended installation/uninstallation procedures are now supported.

10.30. Release 1.5

* Support for FMU Model Exchange 1.0 export from Simulink.

10.31. Release 1.4.6

» Bugfix: MATLAB interface function get Model Vari abl es did not work for some MATLAB versions.

10.32. Release 1.4.5

» Updated the MATLAB interface.

* MATLAB interface now prints thelog to file.

10.33. Release 1.4.4

» Bugfix: FMU file path was hot saved properly causing the rel oad function to be triggered each time the Simulink
model was opened.

10.34. Release 1.4.3

» Bug fix: FMU models containing no variables could not be properly loaded.

10.35. Release 1.4.2

« Bug fix: Enumerators could not be viewed correctly in the Simulink blocks.

177

Release notes

* Bug fix: Minimum and Maximum values were truncated wrong in the Simulink block.

10.36. Release 1.4.1

* FMI Toolbox isbuilt with FMI Library 2.0a2 to fix bugs.

10.37. Release 1.4

* FMI Toolbox is now based on the FMI Library from JModelica.org.
 Improved performance of the FMU parsing.

» New logger functionality.

10.38. Release 1.3.1

* New Flexerabased license system.
 fruSet Val ueSi nul i nk now support setting vector values fast and convenient.
» User can now set how the FMU file should be located from the FMU block GUI.

* Bugfixes

10.39. Release 1.3

* FMI for Co-Simulation 1.0 is now supported.

A restructuring of the installation folders is made to support different FMI versions in the future.

A new block for Co-Simulation is added in Simulink, FMJ CS 1. 0.
e The Simulink block for Model Exchange changes name from FMJUto FMJ ME 1. 0.
* New examplesfor Co-Simulation is added. Only for Windows.

e The FMI interface in Matlab is now based on classes. There are two new Matlab classes, one for FMI Co-
Simulation 1.0 and one for FMI Model Exchange 1.0. The previous interface is replaced with these classes.

10.40. Release 1.2

» Parameter and start values can now be set to expressions in the GUI. These are evaluated just before the ssim-
ulation starts.

178

Release notes

New function isadded for setting parameter and start values of the FM U inthe Simulink model fromaMATLAB
script.

Replaced Block | con tab with an Advanced tab. In the Advanced tab it is now possible to enable/disable the
logger function in the FMU, setting tolerances in the FMU, use the block icon from the FMU if there is any,
decide if the block name should be updated with the FMU name, if new output ports should be added when
the FMU is rel oaded.

It is now possible to save big models.

Major GUI update, removing bugs.

10.41. Release 1.1

Now supports Windows 32-bit, Windows 64-bit, Linux 32-bit and Linux 64-bit.

A new tutorial, Vehicle Tutorial, demonstrating a car model being controlled from a driver implemented in
Simulink.

Fixed bug when terminating from fmilnitialize caused segfault in Simulink.
Fixed bug where adding output ports did not work on some systems.

The Simulink block does not reload the FMU anymore when the Simulink model is opened. This caused for
instance the output portsto be reset.

10.42. Release 1.0

Initial release:

Simulation of compiled Modelicamodels, FMUs, in Simulink.

Simulation of compiled Modelicamodel, FMUs, in Matlab scripts.

Support for fixed step solversin Simulink

Graphical user interface for configuration of parameters and outputs in Simulink.

Generation of result files compliant with Dymola

179

Bibliography

[Jak2003] Johan Akesson. Operator Interaction and Optimization in Control Systems. ISRN LUTFD2/
TFRT--3234--SE. Lund University. Sweden. 2003.

180

	FMI Toolbox User's Guide 2.6.4
	Table of Contents
	Chapter 1. Introduction
	1.1. The FMI Toolbox for MATLAB/Simulink
	1.2. The Functional Mock-up Interface

	Chapter 2. Installation
	2.1. Supported platforms
	2.2. Prerequisites
	2.2.1. MATLAB/Simulink
	2.2.1.1. FMU import
	2.2.1.2. Simulink Coder/Real-Time Workshop

	2.3. Installation procedure
	2.3.1. For Windows
	2.3.2. For Linux
	2.3.3. Set MATLAB path
	2.3.4. Unattended installation
	2.3.4.1. Windows
	2.3.4.2. Linux

	2.4. License information
	2.4.1. Demo mode

	2.5. Uninstallation procedure
	2.5.1. For Windows
	2.5.2. For Linux
	2.5.3. Unattended uninstallation
	2.5.3.1. Windows
	2.5.3.2. Linux

	2.6. Support

	Chapter 3. Simulation with Simulink
	3.1. Introduction
	3.2. Getting started
	3.3. FMU block properties
	3.3.1. Set parameters and variables start values
	3.3.2. Input ports
	3.3.3. Output ports
	3.3.3.1. Direct Feedthrough

	3.3.4. FMU model information
	3.3.5. Log
	3.3.5.1. Create result file
	3.3.5.2. Logger

	3.3.6. Advanced
	3.3.6.1. Block icon and mask
	3.3.6.2. Tolerances (Not for FMU CS 1.0)
	3.3.6.3. Sample times (FMU CS block only)
	3.3.6.4. Reload FMU
	3.3.6.5. Find FMU file on Model load

	3.3.7. Coder
	3.3.8. Scripting FMU block
	3.3.9. Load FMU model
	3.3.10. Reset an FMU model
	3.3.11. Reload FMU model
	3.3.12. Add Structured Ports to the FMU Block
	3.3.13. Using the filter functions

	3.4. FMU block and Simulink Coder
	3.5. Examples
	3.5.1. Changing start values and using the filter functions
	3.5.2. Configure outputs
	3.5.3. Configure ports using structural naming
	3.5.4. Build target containing an FMU block
	3.5.5. Build rti1006.tlc target containing an FMU block
	3.5.5.1. Set start values and parameters

	Chapter 4. Simulation in MATLAB
	4.1. Introduction
	4.2. A first example
	4.3. Using the FMU model classes
	4.3.1. Handle class
	4.3.2. Calling functions
	4.3.3. Help

	4.4. Examples
	4.4.1. Set start values and parameters
	4.4.2. Simulation with inputs
	4.4.3. Simulation with configured output
	4.4.3.1. Using custom solver (Model Exchange only)

	4.5. Upgrading to FMI 2.0
	4.5.1. Converting from FMI 1.0 to FMI 2.0
	4.5.2. Using both FMI 1.0 and FMI 2.0 in scripts

	Chapter 5. FMU export from Simulink
	5.1. Introduction
	5.2. Getting started
	5.3. Simulink Coder targets for FMU export
	5.4. Selecting MEX C compiler
	5.5. Co-Simulation export
	5.5.1. Synchronization of time
	5.5.2. Capability flags
	5.5.3. Configuration Parameters
	5.5.3.1. Solver
	5.5.3.2. Optimization
	5.5.3.3. Real-Time Workshop/Code Generation
	FMU Export
	Report
	Comments
	Symbols
	Custom code
	Debug

	5.5.4. Support for user defined S-Function blocks

	5.6. Model Exchange export
	5.6.1. Configuration Parameters
	5.6.1.1. Solver
	5.6.1.2. Optimization
	5.6.1.3. Real-Time Workshop/Code Generation
	FMU Export
	Report
	Comments
	Symbols
	Custom code
	Debug

	5.6.2. Support for user defined S-Function blocks

	5.7. Parameters
	5.8. Internal signals
	5.8.1. Test points

	5.9. Supported data types
	5.10. Supported blocks
	5.11. Examples
	5.11.1. Using a Simulink model to control a Vehicle model
	5.11.1.1. Export Simulink model as FMU
	5.11.1.2. Import FMU in vehicle model and simulate it in Dymola

	Chapter 6. Design of Experiments
	6.1. Introduction
	6.1.1. Concepts
	6.1.2. Workflow

	6.2. Getting started
	6.3. Function reference
	6.3.1. FMUModelME1
	6.3.1.1. trim
	6.3.1.2. linearize

	6.3.2. FMUDoESetup
	6.3.2.1. Constructor
	6.3.2.2. DoE methods
	qmc - Quasi-Monte Carlo analysis
	mc - Monte Carlo analysis
	fullfact - Full factorial analysis
	custom - User-defined test matrix

	6.3.3. FMUDoEResult
	6.3.3.1. properties
	6.3.3.2. main_effects
	6.3.3.3. bode
	6.3.3.4. step

	6.4. Examples
	6.4.1. Mass-Spring system
	6.4.1.1. Define the Experiment Setup
	6.4.1.2. Run DoE experiments
	6.4.1.3. Analyze results
	Steady-state
	Dynamic analysis

	Chapter 7. Tutorial examples
	7.1. Stabilization of a Furuta pendulum system
	7.1.1. Tutorial
	7.1.1.1. Simulate Furuta model with co-simulation block

	7.2. Vehicle dynamics model simulated in Simulink with a driver
	7.2.1. Tutorial

	Chapter 8. Limitations
	8.1. Simulink FMU block
	8.2. MATLAB FMU Classes
	8.3. FMU Export
	8.3.1. Common target
	8.3.2. Model Export target
	8.3.3. Co-Simulation target

	Chapter 9. License installation
	9.1. Retrieving a license file
	9.1.1. Get MAC address

	9.2. Install a license
	9.2.1. Installing a node-locked license
	9.2.1.1. Windows
	9.2.1.2. Unix
	9.2.1.3. Updating the license

	9.2.2. Installing a server license
	9.2.2.1. Windows
	9.2.2.2. Unix
	9.2.2.3. Using the environment variable
	9.2.2.4. Updating the license

	9.3. Installing a license server
	9.3.1. Configure the license file
	9.3.2. Installation on Windows
	9.3.3. Installation on Unix

	9.4. Troubleshooting license installation
	9.4.1. Running lmdiag

	Chapter 10. Release notes
	10.1. Release 2.6.4
	10.2. Release 2.6.3
	10.3. Release 2.6.2
	10.4. Release 2.6.1
	10.5. Release 2.6
	10.6. Release 2.5
	10.7. Release 2.4
	10.8. Release 2.3.3
	10.9. Release 2.3.2
	10.10. Release 2.3.1
	10.11. Release 2.3
	10.12. Release 2.2.1
	10.13. Release 2.2
	10.14. Release 2.1
	10.15. Release 2.0.1
	10.16. Release 2.0
	10.17. Release 1.9
	10.18. Release 1.8.6
	10.19. Release 1.8.5
	10.20. Release 1.8.4
	10.21. Release 1.8.3
	10.22. Release 1.8.2
	10.23. Release 1.8.1
	10.24. Release 1.8
	10.25. Release 1.7.2
	10.26. Release 1.7.1
	10.27. Release 1.7
	10.28. Release 1.6.1
	10.29. Release 1.6
	10.30. Release 1.5
	10.31. Release 1.4.6
	10.32. Release 1.4.5
	10.33. Release 1.4.4
	10.34. Release 1.4.3
	10.35. Release 1.4.2
	10.36. Release 1.4.1
	10.37. Release 1.4
	10.38. Release 1.3.1
	10.39. Release 1.3
	10.40. Release 1.2
	10.41. Release 1.1
	10.42. Release 1.0

	Bibliography

